\(A=\left(1-\frac{1}{3}\right)X\left(1-\frac{1}{4}\right)X\left(1-\frac{1}{5}\right)X...X\left(1-\frac{1}{99}\right)\).TÌM A
GIÚP MÌNH NHÉ
AI NHANH MÌNH TIK
MÀ X LÀ NHÂN NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{6}\right)x\left(1-\frac{1}{7}\right)x\left(1-\frac{1}{8}\right)x\left(1-\frac{1}{9}\right)x\left(1-\frac{1}{10}\right)\)
\(=\frac{5}{6}x\frac{6}{7}x\frac{7}{8}x\frac{8}{9}x\frac{9}{10}\)
\(=\frac{1}{2}\)
=(1/1-1/6)x(1/1-1/7)x(1/1-1/8)x(1/1-19)x(1/1-1/10)
=5/6x6/6x7/8x8/9x9/10
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow x+x+x+x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1\)
\(\Leftrightarrow4x+\frac{15}{16}=1\Leftrightarrow4x=\frac{1}{16}\Leftrightarrow x=\frac{1}{16}:4=\frac{1}{64}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Rightarrow4x+\frac{15}{16}=1\)
\(\Rightarrow4x=1-\frac{15}{16}=\frac{1}{16}\)
\(\Rightarrow x=\frac{1}{16}:4=\frac{1}{16}.\frac{1}{4}=\frac{1}{64}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)
\(=\frac{100}{2}=50\)
a/ \(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=x^7+x+\frac{1}{x}+\frac{1}{x^7}-\left(x+\frac{1}{x}\right)=x^7+\frac{1}{x^7}\)
b/ Ta có:
\(\left(x+\frac{1}{x}\right)^2=49\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=49-2=47\)
\(\left(x+\frac{1}{x}\right)^3=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}=343-3.7=322\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=47.322=15134\)
\(\Leftrightarrow x^5+\frac{1}{x}+x+\frac{1}{x^5}=15134\)
\(\Leftrightarrow x^5+\frac{1}{x^5}=15134-7=15127\)
a)\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=x^7+x+\frac{1}{x}+\frac{1}{x^7}-x-\frac{1}{x}\)
=\(x^7+\frac{1}{x^7}\)
\(x+\frac{1}{x}=7\)
=>\(x\left(x+\frac{1}{x}\right)=7x\)
=>\(^{x^2-7x+1=0}\)
=>\(x=\frac{7+3\sqrt{5}}{2};x=\frac{7-3\sqrt{5}}{2}loại\)
=>\(x^5+\frac{1}{x^5}=15127\)
\(A=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{98}{99}=\dfrac{2}{99}\)