1. a,Tìm hai số dương biết: tổng, hiệu, và tích của chúng tỉ lệ nghịch với các số 20, 140 và 7
b, CMR nếu a+5b chia hết cho 7 với a;bì 10a+b cũng chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là x và y ta có:
\(20\left(x+y\right)=140\left(x-y\right)=7xy\)
\(\Rightarrow\frac{x+y}{7}=\frac{x-y}{1}=\frac{xy}{20}=\frac{x+y+x-y}{7+1}=\frac{x+y-x+y}{7-1}=\frac{x}{4}=\frac{y}{3}=\frac{xy}{4y}=\frac{xy}{3x}\)
\(3x=20\Rightarrow x=6\frac{2}{3};\) \(4y=20\Rightarrow y=5\)
Vậy các số cần tìm là \(6\frac{2}{3}\) và 5.
gọi 2 số là: a,b
từ giả thiết ta có:
20(a+b)= 140(a-b)= 7ab
+) 20(a+b)=140(a-b) tương đương với: 3a=4b suy ra a=4/3b
Thay vào : 20(a+b)= 7ab ta được phương trình:
20*( 4/3b+b)= 7*4/3b*b tưong đuơng 20*7/3b=7*4/3b^2
tương đương với: b^2 - 5b=0 tương đương với: b=0 hoặc b=5
Gọi a,b là 2 số cần tìm(a>b>0 và a,b thuộc Z)
Theo đề:a+b,a-b,ab tỉ lệ nghịch với 20,140,7
<=>20(a+b)=140(a-b)(1) và 140(a-b)=7ab (2)
Ta có:
(1)<=>20b+140b=140a-20a
<=>160b=120a
=>a=4/3.b thế vào (2) đc:
140(4/3b-b)=7.(4/3 b)b
<=>140/3.b=28/3.b²
<=>b=(140/3):(28/3)=5
=>a=4/3.5=20/3(loại vì a thuộc Z)
Gọi a,b là 2 số cần tìm(a>b>0 và a,b thuộc Z)
Theo đề:a+b,a-b,ab tỉ lệ nghịch với 20,140,7
<=>20(a+b)=140(a-b)(1) và 140(a-b)=7ab (2)
Ta có:
(1)<=>20b+140b=140a-20a
<=>160b=120a
=>a=4/3.b thế vào (2) đc:
140(4/3b-b)=7.(4/3 b)b
<=>140/3.b=28/3.b²
<=>b=(140/3):(28/3)=5
=>a=4/3.5=20/3(loại vì a thuộc Z)
Vậy hok có a,b nào thỏa mãn điều kiện đề bài
gọi hai số dương đó là a và b
Theo bài ra : ( a + b ) , ( a - b ) , ab tỉ lệ nghịch với 35;210;12
\(\Rightarrow\)35 . ( a + b ) = 210 . ( a - b ) = 12ab
210 . ( a - b ) = 12ab ( 1 )
35 . ( a + b ) = 210 . ( a - b )
\(\Rightarrow\)35a + 35b = 210a - 210b \(\Rightarrow\)245b = 175a \(\Rightarrow\)a = \(\frac{7}{5}b\)
Thay a = \(\frac{7}{5}b\)vào ( 2 ) ta được : 210 . ( \(\frac{7}{5}b\)- b ) = 12 . \(\frac{7}{5}b\). b
210 . \(\frac{2}{5}b\)= \(\frac{84}{5}b\). b
hay \(84b=\frac{84b^2}{5}\)
\(\frac{b}{5}=1\)\(\Rightarrow b=5\)
Thay b = 5 vào ( 1 ) ta được : 210 . ( a - 5 ) = 12 . 5 . a
210a - 1050 = 60a
150a = 1050
a = 7
Vậy a = 7 ; b = 5
Gọi 2 số cần tìm lần lượt là a,b.
theo đề bài ta có:
20(a+b)=140(a-b)=7ab
=> \(\frac{20\left(a+b\right)}{140}=\frac{140\left(a-b\right)}{140}=\frac{7ab}{140}\)
=>\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}\)(1)
theo t/c của dãy ..... ta có:
\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}=\frac{a+b+a-b}{7+1}=\frac{2a}{8}=\frac{a}{4}\)
Do đó:
\(\frac{ab}{20}=\frac{a}{4}\)
=> 4ab=20a
=> b=20a:4a=5
thay b=5 vào (1) ta được
bạn tự thay rồi tính tiếp.
b)
ta có:
a+5b\(⋮\)7
=> 10a+50b\(⋮7\)
=>\(\left(10a+b\right)+49b⋮7\)
=>10+b\(⋮7\) vì 49b\(⋮7\)
vậy ...