Tìm cặp số nguyên (x,y) thoả mãn:
|y−2015| +31=2015|3x−21|+652015|3x−21|+65
giúp mik nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+3x+y+3=7\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=7\)
Mà \(x,y\) là số nguyên nên \(x+1,y+3\) là các ước của \(7\).
Ta có bảng giá trị:
x+1 | -7 | -1 | 1 | 7 |
y+3 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -4 | -10 | 4 | -2 |
\(x^3+xy-3x-y=5\)
\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)
Với \(x=1\)không thỏa mãn.
Với \(x\ne1\):
\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)
Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)
Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).