Cho tam giác ABC cân tại A. M là trung điểm của BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I
a, CM: AE=AI
b, CM: AM là đường trung trực của đoạn thẳng EI
c, CM: EI//BC
d, Giả sử AB = 15cm, BC=18cm. Tính độ dài AM và ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cmXét \(\Delta\)ABM và \(\Delta\)ACM có:
AB = AC
\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)
AM chung
=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)
mà \(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o
Do đó AM \(\perp\) BC
=> \(\Delta\)ABM vuông tại M
Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:
AB2 = AM2 + BM2
=> 152 = AM2 + 92
=> AM = 12cm
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AD chung
AB=AC
=>ΔABD=ΔACD
=>DB=DC
ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(1)
DB=DC
=>D nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,D thẳng hàng
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.