cho tam giác ABC có AB= 6cm , AC =8cm, BC = 10cm
Ke phân giác BD, CE (D thuộc AC, E thuộc AB). BD và CE cắt nhau tại I. Tính số đo góc BIC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)
Tự vẽ hình.
a) Ta có: \(AB^2+AC^2=8^2+6^2=100\); \(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Theo định lý Pytago đảo \(\Rightarrow\Delta ABC\) vuông tại \(A\).
b) Xét tam giác \(IBC\). Theo định lý tổng 3 góc trong tam giác ta có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\\ \Rightarrow\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(180^0-\widehat{A}\right)\\ \Rightarrow\overrightarrow{BIC}=180^0-\dfrac{1}{2}\left(180^0-90^0\right)=135^0\)
a/ Có
\(\left\{{}\begin{matrix}AB^2+AC^2=36+64=100\\BC^2=100\end{matrix}\right.\)
=> \(AB^2+AC^2=BC^2\)
=> t/g ABC vuông tại A
b/ Có
\(\widehat{ABC}+\widehat{ACB}=90^o\)
=> \(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=45^o\)
=> \(\widehat{IBC}+\widehat{ICB}=45^o\) (do phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I)
=> \(\widehat{BIC}=180^o-45^o=135^o\)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Ta có: ΔABC vuông tại A(cmt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(Hai góc nhọn phụ nhau)
mà \(\widehat{ABC}=2\cdot\widehat{DBC}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ACB}=2\cdot\widehat{ECB}\)(CE là tia phân giác của \(\widehat{ACB}\))
nên \(2\cdot\widehat{DBC}+2\cdot\widehat{ECB}=90^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=90^0\)
hay \(\widehat{IBC}+\widehat{ICB}=45^0\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)
\(\Leftrightarrow\widehat{BIC}=180^0-45^0\)
hay \(\widehat{BIC}=135^0\)
Vậy: \(\widehat{BIC}=135^0\)
\(Hình \) \(tự \) \(vẽ\)
a, Xét △\(ABC\) ta có :
\(AB\)2 + \(AC\)2\(= \)62 + 82= 100 ( cm ) mà \(BC\)2=102 =100 ( cm )
➙ AB2 + AC2 = BC2
➙ Tam giác ABC vuông
câu a : Bạn áp dụng định lý py - ta - go đảo nhá ^^
câu b : Có BD là phân giác \(\widehat{ABC}\), CE là phân giác \(\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{IBC}=\frac{1}{2}\widehat{ABC}\), \(\widehat{ICB}=\frac{1}{2}\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{IBC}+\widehat{ICB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}90=45\)
a;\(6^2+8^2=100\)
\(10^2=100\)
\(\Rightarrow6^2+8^2=10^2\)
=> Tam giác có đọ dài 3 cạnh lần lượt là 6cm;8cm;10;cm là tam giác vuông
a, ta có : AB2 + AC2 = 62 + 82 =100
BC2 = 100
=> 100 = 100 hay AB2 + AC2 = BC2 => TAM GIÁC ABC CÓ 3 CẠNH AB, AC, BC LÀ TAM GIÁC VUÔNG (ĐL PY-TA-GO ĐẢO)
VẬY...
k cho mình nha, mình đánh mệt lắm
a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)
Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)
b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)
Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)
Tương tự ID = IN nên IE = IN = ID.
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)