K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đề bài

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{x}{xy}+\frac{y}{xy}\Rightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)^2=xy\)

Vì x và y là hai số trái dấu => xy < 0

Mà \(\left(x+y\right)^2\ge0\forall x,y\)

=> Mâu thuẫn => giả sử sai

Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài

15 tháng 10 2017

cảm ơn bạn nha..

6 tháng 9 2016

Ta có : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow\left(x+y\right)^2=xy\) 

Mặt khác, ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy>xy\)

Do đó dấu "=" không xảy ra 

=> Không tồn tại hai số x,y thỏa mãn giả thiết

6 tháng 9 2016

Ta dùng phương pháp chứng minh phản chứng:

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y 
Suy ra 1x+y =y+xxy  ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy
Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.

             Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.

5 tháng 5 2018

Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)

Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)

Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :

\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)

\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(f(7)-f(3)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

=> đpcm

6 tháng 3 2020

(x - 2y) + (4y - 5z) + (z - 3x)
= x - 2y + 4y - 5z + z - 3x
= 2y - 4z - 2x là số chẵn
Mà |x - 2y| + |4y - 5z| + |z - 3x| cùng tính chẵn lẻ với tổng (x - 2y) + (4y - 5z) + (z - 3x)
=> |x - 2y| + |4y - 5z| + |z - 3x| là số chẵn, khác 2011
=> không tồn tại các giá trị nguyên của x , y ,z

6 tháng 3 2020

\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2011\)

\(=\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)\)

\(=x-2y+4y-5z+z-3x\)

\(=2y-4z-2x\)là số chẵn

Mà \(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\) cùng chẵn lẽ với tổng \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)\)

\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\) là số chẵn \(\ne2011\)

\(\Rightarrow\)không tồn tại các giá trị nguyên của x,y,z

15 tháng 4 2016

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

16 tháng 4 2016

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại