tìm x,biết:
a) (2x+3)2=\(\frac{9}{121}\)
b)(3x-1)3=\(-\frac{8}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x+3\right)^2=\frac{3^2}{11^2}\)
từ đó suy ra
\(2x+3=\frac{3}{11}\)
2x=3/11-3
2x=-2/8/11
x=-2/8/11:2
x=-1/4/11
b,
(3x-1)^3=-8/27
(3x-1)^3=(-2/3)^3
Vậy suy ra
3x-1=-2/3
3x=-2/3+1
3x=1/3
x=1/3:3
x=1/9
a)\(\left(2x+3\right)^2=\frac{9}{121}\\ \Leftrightarrow\left(2x+3\right)^2=\left(\pm\frac{3}{11}\right)^2\\ \Rightarrow\left\{{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{-15}{11}\\x=\frac{-18}{11}\end{matrix}\right.\)
Vậy...
b)\(\left(3x-1\right)^3=\frac{-8}{27}\\ \Leftrightarrow\left(3x-1\right)^3=\left(\frac{-2}{3}\right)^3\\ 3x-1=\frac{-2}{3}\\ \Rightarrow x=\frac{1}{9}\)
Vậy...
a) \(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Rightarrow2x+3=\pm\frac{3}{11}\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\frac{3}{11}-3=-\frac{30}{11}\\2x=\left(-\frac{3}{11}\right)-3=-\frac{36}{11}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\left(-\frac{30}{11}\right):2\\x=\left(-\frac{36}{11}\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}.\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-1=-\frac{2}{3}\)
\(\Rightarrow3x=\left(-\frac{2}{3}\right)+1\)
\(\Rightarrow3x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}:3\)
\(\Rightarrow x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}.\)
Chúc bạn học tốt!
a) (2x + 3)2 = 9/121
Ta có: 9/121 = (3/11)2 = (-3/11)2
=> 2x + 3 thuộc {3/11; -3/11}
=> x thuộc {-15/11; -18/11}
b) (3x - 1)3 = -8/27 = (-2/3)3
=> 3x - 1 = -2/3
=> x = 1/9
\(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Rightarrow\left(2x+3\right)^2=\hept{\begin{cases}\left(\frac{3}{11}\right)^2\\\left(\frac{-3}{-11}\right)^2\end{cases}}\)
\(\Rightarrow2x+3=\hept{\begin{cases}\frac{3}{11}\\\frac{-3}{-11}\end{cases}}\)
a)
\(\begin{array}{l}x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\\x = \frac{{ - 7}}{9}:\frac{{14}}{{27}}\\x = \frac{{ - 7}}{9}.\frac{{27}}{{14}}\\x = \frac{{ - 3}}{2}\end{array}\)
Vậy \(x = \frac{{ - 3}}{2}\).
b)
\(\begin{array}{l}\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right):\frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right).\frac{3}{2}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
c)
\(\begin{array}{l}\frac{2}{5}:x = \frac{1}{{16}}:0,125\\\frac{2}{5}:x = \frac{1}{{16}}:\frac{1}{8}\\\frac{2}{5}:x = \frac{1}{{16}}.8\\\frac{2}{5}:x = \frac{1}{2}\\x = \frac{2}{5}:\frac{1}{2}\\x = \frac{2}{5}.2\\x = \frac{4}{5}\end{array}\)
Vậy \(x = \frac{4}{5}\)
d)
\(\begin{array}{l} - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\\ - \frac{5}{{12}}x = \frac{4}{6} - \frac{3}{6}\\ - \frac{5}{{12}}x = \frac{1}{6}\\x = \frac{1}{6}:\left( { - \frac{5}{{12}}} \right)\\x = \frac{1}{6}.\frac{{ - 12}}{5}\\x = \frac{{ - 2}}{5}\end{array}\)
Vậy \(x = \frac{{ - 2}}{5}\).
Chú ý: Khi trình bày lời giải bài tìm x, sau khi tính xong, ta phải kết luận.
a) \(\left(2x+3\right)^2=\frac{9}{121}\)
Ta có: \(\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
\(\Rightarrow2x+3\in\left\{\frac{3}{11};\frac{-3}{11}\right\}\)
\(\Rightarrow x\in\left\{\frac{-15}{11};\frac{-18}{11}\right\}\)
Vậy \(x\in\left\{\frac{-15}{11};\frac{-18}{11}\right\}\)
b) \(\left(3x-1\right)^3=\frac{-8}{27}\)
Ta có: \(\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Rightarrow3x-1=\frac{-2}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)
a.
\(\left(2x+3\right)^2=\frac{9}{121}\)
\(\left(2x+3\right)^2=\left(\pm\frac{3}{11}\right)^2\)
\(2x+3=\pm\frac{3}{11}\)
TH1:
\(2x+3=\frac{3}{11}\)
\(2x=\frac{3}{11}-3\)
\(2x=-\frac{30}{11}\)
\(x=-\frac{30}{11}\div2\)
\(x=-\frac{15}{11}\)
TH2:
\(2x+3=-\frac{3}{11}\)
\(2x=-\frac{3}{11}-3\)
\(2x=-\frac{36}{11}\)
\(x=-\frac{36}{11}\div2\)
\(x=-\frac{18}{11}\)
Vậy \(x=-\frac{15}{11}\) hoặc \(x=-\frac{18}{11}\)
b.
\(\left(3x-1\right)^3=-\frac{8}{27}\)
\(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
\(3x-1=-\frac{2}{3}\)
\(3x=-\frac{2}{3}+1\)
\(3x=\frac{1}{3}\)
\(x=\frac{1}{3}\div3\)
\(x=\frac{1}{9}\)
Chúc bạn học tốt ^^
a) (2x−1)2−25=0(2x−1)2−25=0
(2x−1)2=0+25=25(2x−1)2=0+25=25
(2x−1)2=52=(−5)2(2x−1)2=52=(−5)2
⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2
b) 8x3−50x=08x3−50x=0
2x(4x2
a: Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
a) \(\left(2x+3\right)^2=\frac{9}{21}\)
<=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\frac{4}{11}\\x=-1\frac{7}{11}\end{cases}}\)
Vậy...