Tìm giá trị của biến x để
a)\(P=\frac{1}{x^2+2x+6}\) đạt giá trị lớn nhất
b)\(Q=\frac{x^2+x+1}{x^2+2x+1}\) đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)
\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))
=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)
Vậy MaxP = 1/5 khi x = -1
câu b tương tự
\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(a)\) Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x )
\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) )
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)
\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~
Lời giải:
$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$
Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$
Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)
a)P lớn nhất khi \(x^2+2x+6\) nhỏ nhất
Ta có: \(x^2+2x+6\\ =x^2+2.x.1+1^2+5\\ =\left(x+1\right)^2+5\ge5\)
=>GTNN của $x^2+2x+6$ là 5
Vậy GTLN của \(P=\frac{1}{x^2+2x+6}\)là \(\frac{1}{5}\)
a) \(P=\frac{1}{x^2+2x+6}=\frac{1}{x^2+2x+1+5}=\frac{1}{\left(x+1\right)^2+5}\)
Tử thức P là hằng số dương nên P đạt giá trị
lớn nhất khi mẫu thức của nó nhận giá trị nhỏ nhất
Vì \(\left(x+1\right)^2+5\ge5\) với mọi x và \(\left(x+1\right)^{^{ }2}+5\)
đạt giá trị nhỏ nhất bằng 5 khi x+1=0 <=>x=-1
Vậy P đạt giá trị lớn nhất MaxP=1/5 khi x=-1