K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

21 tháng 12 2018

( 21n + 4 , 19n +3 ) 

Gọi d thuộc ƯC ( 21n +4, 19n +3 ) 

=> 21n + 4  chia hết cho d

     19n+3    chia hết cho d

=> 21. ( 19n+3) - 19. ( 21n +4 ) chia hết cho d 

=> 399n + 63 - 399n + 76 

=> 13 

( mình chỉ làm đc đến đây thôi , xin lỗi bạn )

11 tháng 4 2021

Làm tiếp theo của bạn Gia Hân Nguyễn nha:

Vì 13 chia hết cho d suy ra d thuộc các số 1,13

mà 13 là SNT suy ra(21n+4,19n+3)=1

16 tháng 4 2017

Gọi d là UCLN(21n + 4,14n+3) 

Ta có: 21n + 4 chia hết cho d => 2(21n + 4) chia hết cho d => 42n + 8 chia hết cho d

          14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d => 42n + 6 chia hết cho d

=> 42n + 8 - (42n + 6) chia hết cho d

=> 2 chia hết cho d => d = {1;2}

Mà 14n + 3 lẻ => d lẻ => d khác 2 => d = 1

=> UCLN(21n+4,14n+3) = 1

1 tháng 1 2019

Sai rồi bn

24 tháng 2 2018

Ta xét hai trường hợp của n:

Trường hợp 1: nếu n là số chẵn, tức là : n =2k với k N.

Khi đó: (n+4)= (2k+4) ⋮ 2→(n+1)(n+4) ⋮ 2, đpcm

Trường hợp 2: nếu n là số lẻ, tức là : n =2k+1 với k N.

Khi đó: (n+1)= (2k+1+1)= (2k+2) ⋮ 2 → (n+1)(n+4) ⋮ 2, đpcm

Vậy, với mọi số tự nhiên n thì tích (n+1)(n+4) ⋮ 2.

Chú ý: Cũng có thể sử dụng lập luận như sau:

“Với mọi số tự nhiên n thì trong hai số n+1 và n+4 có một số chẵn,

do đó tích của chúng sẽ luôn chia hết cho 2

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

4 tháng 12 2017
Help me <3 :(
17 tháng 10 2021

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn

1 tháng 4 2018

Bài 1:

a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016

C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)

C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)

C = 4 . 21 + 44 . 21 + ... + 42014 . 21

C = 21(4 + 44 + ... + 42014\(⋮\)21

=> C \(⋮\)21

C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016

C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)

C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 4+ 44 + 45)

C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365

C = 1365(4 + 47 + ... + 42011)

mà 1365 \(⋮\)105

=> C \(⋮\)105