Tam giác ABC có tia phân giác của góc BAC cắt cạnh BC ở D. Từ D kẻ đường song song với AB, đường này cắt cạnh AC ở E.
a) Chứng minh tam giác AED cân.
b) Đường thẳng song song với BC vẽ từ E cắt cạnh AB ở F. Chứng minh BF=AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
b: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>MF=ME
=>M là trung điểm của EF
c: AC-AB=AE+EC-AD+DB
=2BD
a: Xét tứ giác BFED có
FE//BD
DE//BF
Do đó: BFED là hình bình hành
Suy ra: DE=BF
mà AE=BF
nên ED=EA
hay ΔAED cân tại E
ta có DE//AB
mà góc KAD =góc EAD(tia p/g góc A)
=> góc KAD=góc EAD (hai góc so le trong )
xét tam giác EAD có
góc EAD=góc EDA(hai góc ở đáy bằng nhau )
vậy tam giác EAD CÂN TẠI E
a) Chứng minh BDEF là hình bình hành Þ ED= BF = AE Þ DAED cân ở E.
b) Ta có B A D ^ = D A C ^ (vì cùng bằng A D E ^ ) Þ AD là phân giác Â
a, Vì : ED//AB → ED//FB
EF//BC → EF//BD
Nên FEDB là hình bình hành → FB = ED
Mà AE = FB (gt) →AE = ED → Δ EAD là tam giác cân và cân tại E
b, Vì Δ EAD là tam giác cân tại E
nên ta có góc ADE = góc DAE(1)
VÌ DE // AB nên ta có góc ADE =góc BAD (2)
Từ (1) và (2) ta có góc DAE =góc BAD
hay AD là phân giác của góc A
câu a)
Vì AD là p/g của góc BAC => góc BAD = góc CAD
Vì AB // DE => góc BAD = góc ADE ( 2 góc so le trong )
=> góc CAD = góc ADE
T/g ADE có Góc EAD = góc ADE
=> T/g ADE cân E