9+99+999+...+99...99 9(n chu so 9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(D=10+100+......+1000...000-1-1-.....-1\) có 50 chữ số 0 và 50 số 1
\(=111.....111-50\) có 51 chữ số 1 \(=111.....1061\) có 48 chữ số 1
b,tương tự a
c,\(1-2^2+3^2-4^2+.......+99^2-100^2\)
\(=\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)+......+\left(99-100\right)\left(99+100\right)\)
\(=-\left(3+7+.....+199\right)\)\(=-\frac{\left(199+3\right).50}{2}=-5050\)
d,\(G=1.1!+2.2!+.......+100.100!\)
\(=\left(2-1\right).1!+\left(3-1\right).2!+.....+\left(101-1\right).100!\)
\(=2!-1!+3!-2!+.......+101!-100!\)
\(=101!-1!\)
Tinh tonga) D= 9+99+999+9999+...+999....9 (50 chu so 9)b) E= 9+99+999+...+999...9 (200 chu so 9)c)C=1−22+32−42+...+992−1002d) G= 1.1!+ 2. 2!+3.3!+ ... +100.100!
a) Tổng \({S_n}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên ta có:
\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{1\left( {1 - {{\left( {\frac{1}{3}} \right)}^n}} \right)}}{{1 - \frac{1}{3}}} = \frac{{1 - {{\left( {\frac{1}{3}} \right)}^n}}}{{\frac{2}{3}}} = \frac{3}{2}\left( {1 - \frac{1}{{{3^n}}}} \right) = \frac{3}{2} - \frac{1}{{{{2.3}^{n - 1}}}}\)
b) Ta có:
\(\begin{array}{l}{S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9} = \left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) + ... + \left( {\underbrace {100...0}_{n\,\,chu\,\,so\,\,0} - 1} \right)\\ = \left( {10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}} \right) - n\end{array}\)
Tổng \(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 10\) và công bội \(q = 10\) nên ta có:
\(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,s\^o \,\,0} = \frac{{10\left( {1 - {{10}^n}} \right)}}{{1 - 10}} = \frac{{10 - {{10}^{n + 1}}}}{{ - 9}} = \frac{{{{10}^{n + 1}} - 10}}{9}\)
Vậy \({S_n} = \frac{{{{10}^{n + 1}} - 10}}{9} - n = \frac{{{{10}^{n + 1}} - 10 - 9n}}{9}\)
Hình thang và hình chữ nhật có nhiều nét giống nhau, tuy nhiên cách tính diện tích hình chữ nhật và diện tích hình thang lại khác nhau. Từ bài viết hướng dẫn cách tính diện tích hình chữ nhật trước đó, hôm nay Taimienphi sẽ chia sẻ với bạn đọc cách tính diện tích hình thang: vuông, cân, khi biết độ dài 4 cạnh, công thức tính. Hãy cùng theo dõi và chia sẻ nếu như bạn hay ai đó đang cần nhé.
Ta có: A=9+99+…+9999…99
=>A=9+90+9+990+9+…+9999…90+9
=>A=(90+990+…+9999…90)+(9+9+9+…+9)(có 50 chữ số 9)
=>A=(9.10+99.10+…+9999…9.10)+9.50
=>A=(9+99+…+9999…9).10+9.5.10
=>A=(9+99+…+9999…9+9.5).10 chia hết cho 10
=>ĐPCM.
a=9+99+999+...+99..99
cộng cả 2 vế với 50 ta có
a+50=(9+1)+(99+1)+...+(99..9+1)
a+50=10+100+...+100...00
a+50=11..111
a=11..111-50
a=111..1061