Tìm số dư trong phép chia 2002\(^{2003}\)cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của C là : (2003 - 1) : 1 + 1 = 2003
Nếu nhóm 3 số hạng vào 1 nhóm thì số nhóm là : 2003 : 3 = 667 (nhóm) dư 2 số hạng
Ta có :
\(C=\left(2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2001}+2^{2002}+2^{2003}\right)\)
\(C=6+\left[2^3.\left(1+2+2^2\right)+...+2^{2001}.\left(1+2+2^2\right)\right]\)
\(C=6+\left[2^3.7+...+2^{2001}.7\right]\)
\(C=6+7.\left(2^3+...+2^{2001}\right)\)
\(\Rightarrow C:7\)dư 6
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
Lời giải:
Theo định lý Fermat thì:
$2002^{18}\equiv 1\pmod {19}$
$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$
$2002\equiv 7\pmod {19}$
$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$
Vậy $2002^{2003}$ chia $19$ dư $11$