Khi đặt điện áp xoay chiều u=Uocos(120\(\pi\)t)vào hai đầu đoạn mạch chỉ có điện dung thay đổi.Khi tăng điện dung của tụ điện thêm \(\frac{50}{\pi}\) \(\mu\)F thì cường độ dòng điện của tụ tăng thêm 0,75\(\sqrt{2}\) A. Giá trị của Uo là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
\(Z_C=\frac{1}{\omega C}=\frac{1}{100\pi.\frac{10^{-4}}{\pi}}=100\Omega\)
\(U_0=I_0Z_C=2\sqrt{2}.100=200\sqrt{2}V\)
Do u vuông pha với i nên
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
\(\Leftrightarrow\left(\frac{u}{200\sqrt{2}}\right)^2+\left(\frac{\sqrt{6}}{2\sqrt{2}}\right)^2=1\)
\(\Rightarrow u=\pm100\sqrt{2}\left(V\right)\)
Do u trễ pha \(\frac{\pi}{2}\)so với i mà i đang tăng nên u < 0
\(\Rightarrow u=-100\sqrt{2}\left(V\right)\)
+ \(U_{AM}=I.Z_{AM}\), \(Z_{AM}\)không thay đổi, nên để \(U_{AM}\) đạt giá trị lớn nhất khi thay đổi C thì dòng điện Imax --> Xảy ra hiện tượng cộng hưởng: \(Z_L=Z_C\)
và \(I=\frac{U}{R+r}\)
Công suất của cuộn dây khi đó: \(P=I^2.r=\left(\frac{U}{R+r}\right)^2.r\) (*)
+ Nếu đặt vào 2 đầu AB một điện áp không đổi và nối tắt tụ C thì mạch chỉ gồm r nối tiếp với R (L không có tác dụng gì)
Cường độ dòng điện của mạch: \(I=\frac{25}{R+r}=0,5\Rightarrow R+r=50\)
Mà R = 40 suy ra r = 10.
Thay vào (*) ta đc \(P=\left(\frac{200}{50}\right)^2.10=160W\)
Bạn học đến điện xoay chiều rồi à. Học nhanh vậy, mình vẫn đang ở dao động cơ :(
Chọn B
U RL = | · Z RL = U R 2 + Z L 2 R 2 + Z L - Z C 2 ∉ R ⇔ Z L 2 = Z L - Z C 2 ⇒ Z C = 2 Z L Z = R 2 + Z L 2 = U I = 100 Ω ⇒ Z L ≤ 100 Ω ⇒ Z C = 2 Z L ≤ 200 Ω ⇒ C ≥ 1 100 π 200 = 50 π 10 - 6 F
\(Z_L=\omega L=\dfrac{1}{\pi}\cdot100\pi=100\Omega\)
Để \(u;i\) cùng pha \(\Rightarrow\varphi=0\) do \(\varphi_u=0\).
\(tan\varphi=tan0=0\)
Mà \(tan\varphi=\dfrac{Z_L-Z_C}{R}=0\)
\(\Rightarrow Z_C=Z_L=100\Omega\)
Mặt khác: \(Z_C=\dfrac{1}{\omega C}\Rightarrow C=\dfrac{1}{\omega\cdot Z_C}=\dfrac{1}{100\pi\cdot100}=\dfrac{10^{-4}}{\pi}\left(C\right)\)
kq la 250 a ban