Bài tập: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng:
a. AD = EF
b. ΔADE = ΔEFC
c. AE = EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: DE // BC (gt)
⇒∠(D1 ) =∠B (đồng vị) (1)
Do EF // AB (gt)
⇒∠(F1 ) =∠B (đồng vị) (2)
Từ (1) và (2) suy ra: ∠(D1 ) =∠F1
Xét Δ ADE và Δ EFC, ta có:
∠A =∠(E1 ) (hai góc đồng vị, EF// AB)
AD = EF ( chứng minh a)
∠(D1 ) =∠(F1 ) (chứng minh trên)
Suy ra : Δ ADE = Δ EFC(g.c.g)
Xét Δ DBF và Δ FDE, ta có:
∠(BDF) =∠(DFE) (so le trong vì EF // AB)
DF cạnh chung
∠(DFB) =∠(FDE) (so le trong vì DE // BC)
Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: AD = EF
Xét 2 tam giác AED và tam giác FED có ED chung
Vì D là chung điểm =>DA=DB
=>EF//AB=>EF//AD
Nối Fvới D=>AE//DF
Vậy hai tam giác ADE = EDF(c.c.c)
=>AD=EF
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
a) xét \(\Delta BDF,\Delta EFD:\)
DF chung
\(\widehat{BDF}=\widehat{EFD}\) ( 2 góc so le trong do AB // EF )
\(\widehat{EDF}=\widehat{BFD}\) ( 2 góc so le trong do DE // BC )
\(\rightarrow\Delta BDF=\Delta EFD\) ( g.c.g)
\(\Rightarrow BD=EF\) ( 2 cạnh tương ứng )
mà AD = BD ( D là trung điểm AB )
BD = FE
=> AD = EF
b) ta có : \(\widehat{ADE}=\widehat{DBF}\) ( 2 góc so le trong do DE // BC )
\(\widehat{DBF}=\widehat{EFC}\) ( 2 góc so le trong do AB // EF )
\(\rightarrow\widehat{ADE}=\widehat{EFC}\)
xét \(\Delta ADE,\Delta EFC\) :
EF = AD ( cmt )
\(\widehat{ADE}=\widehat{EFC}\) ( cmt )
\(\widehat{DAE}=\widehat{FEC}\) ( 2 góc đồng vị do EF // AD )
\(\Rightarrow\Delta ADE=\Delta EFC\left(g.c.g\right)\)
c) vì \(\Delta ADE=\Delta EFC\) ( theo câu b )
=> AE = EC ( 2 cạnh tương ứng )
a)Xét tg BDE và tg EDF
DF chung
D1 = F2 ( slt) [dấu góc]
D2 = F1 ( slt) [dấu góc]
\(\Rightarrow\)tg BDF = tg EDF
b)
Xét tg ADE và tg EFC
BA // EF ( gt) \(\Rightarrow\)E1 = A (đv) [dấu góc]
(1)
AB // EF (gt) \(\Rightarrow\)F3 = B (đv) [dấu góc]
DF // BC (gt) \(\Rightarrow\)B = D3 (đv) [dấu góc]
(2)
Từ (1) và (2) \(\Rightarrow\)F3 = E3 (dấu góc)
Mà AD = EF (cm câu a)
\(\Rightarrow\) tg ADE = tg EFC
c)
Vì tg ADE = tg EFC (câu b)
\(\Rightarrow\)AF = EC ( c tương ứng)