Tập hợp các số tự nhiên n thỏa mãn là {........}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+10 chia hết n-1
=> 3n-3+13 chia hết n-1
=> 3.(n-1)+13 chia hết n-1
Mà 3(n-1) chia hết n-1
=> 13 chia hết n-1
=> n-1 \(\in\)Ư(13)={1; 13}
=> n \(\in\){2; 14}
a) ta có: 7x7 = 0
49x = 0
=> x = 0
=> A = {0}
b) ta có: 0.x = 0
mà x là số tự nhiên
=> x thuộc N
=> B = { x thuộc N}
c) ta có: x + 2 = x - 2
=> x - x = - 2 - 2
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow C=\left\{\varnothing\right\}\)
VÌ n+5 chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1 => 4 chia hết cho n+1
=> n+1 thuộc Ư(4)={2;1;4}
Ta có bảng sau:
n+1 | 2 | 1 | 4 |
n | 1 | 0 | 3 |
=> n={1;0;3}
3n+10 chia hết cho n+1
=>3(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
+)n+1=1=>n=0
+)n+1=7=>n=6
vậy {} cần tìm là {0;6}
Vì n+5*n+1 và n+1*n+1
=> n+5 - (n+1) = n+5-n-1 = 4 * n+1
vậy n+1 thuộc { 1;2;4} => n thuộc { 0;1;3}
dấu * là dấu chia hết nha
=> 3(n-1)+3+10chia hết cho n-1
Vì 3(n-1)chia hết chon-1
=>13chia hết cho n-1
=>n-1 thuôc uoc cua 13
=> n-1\(\in\){1;13}
Ta co bang
n-1 1 13
n 2 14
ta có :n-1:n-1
3.(n-1):n-1
3n-3:n-1
mà 3n+10:n-1
=) 3n-3+13:n-1
13:n-1
n-1 thuoc Ư(13)={1;13}
n={2;14}
neu dung n
Giải:
Ta có: \(3n+8⋮n+1\)
\(\Rightarrow\left(3n+3\right)+5⋮n+1\)
\(\Rightarrow3\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=5\Rightarrow n=4\)
+) \(n+1=-5\Rightarrow n=-6\)
Vậy \(x\in\left\{0;-2;4;-6\right\}\)
\(\frac{3n+8}{n+1}=\frac{3n+3+5}{n+1}=\frac{3\left(n+1\right)+5}{n+1}\)=\(3+\frac{5}{n+1}\)
Để 3n+8\(⋮chiahetcho\left(n+1\right)\)
thì n+1\(\in U\left(5\right)=\left\{1;5\right\}vì\)
n là số tự nhiên
ta có n+1=1<=> n=0
n+1=5 <=> n=4
Vậy n=0 hoặc n=4