Tìm GTLN hoặc GTNN của biểu thức sau
C= 5(x-2)2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^2\ge0\) đẳng thức khi x=2
\(5.\left(x-2\right)^2\ge0\)đẳng thức khi x=2
\(5.\left(x-2\right)^2+1\ge1\)đẳng thức khi x=2
Vậy GTNN A là 1 khi x=2
ta có 5(x-2)2 \(\ge\)0 \(\forall\)x
suy ra 5(x-2)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra khi x-2=0
\(\Leftrightarrow\) x=2
Vậy GTNN của C là 1 khi x=2
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
Tìm GTNN hoặc GTLN của biểu thức sau:
C= |x-3| (2-|x-3|)
D= (x-1)(x+5)(x^2 +4x+5)
G= (x-3)^2 + (x-2)^2
B=y^2-y+1
=y^2-2*y*1/2+1/4+3/4
=(y-1/2)^2+3/4>=3/4
Dấu = xảy ra khi y=1/2
E=-x^2+x+2
=-(x^2-x-2)
=-(x^2-x+1/4-9/4)
=-(x-1/2)^2+9/4<=9/4
Dấu = xảy ra khi x=1/2
\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Vì: \(\left(x-2\right)^2\ge0\)
=> \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x=2
\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)
Vì: \(2\left(x+3\right)^2\ge0\)
=> \(2\left(x+3\right)^2-19\ge-19\)
Vậy GTNN của B là -19 khi x=-3
\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
\(C=x^2+y^2-3x+4y+5\)
\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)
Ta có:
\(\left(x-2\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow5\left(x-2\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow5\left(x-2\right)^2+1\ge1\)với mọi \(x\in R\) Vậy GTNN của C = 1 khi x = 2bn trả lời thiếu