K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Lời giải:

$A=p^4+2019q^4=p^4-q^4+2020q^4$

$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$

$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$

Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$

$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$

Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:

$p^2+q^2\equiv 1+4\equiv 0\pmod 5$

$\Rightarrow A\equiv 0\pmod 5(2)$

Từ $(1);(2)\Rightarrow A\vdots 5(*)$

Mặt khác:

Vì $p,q>5$ nên $p,q$ lẻ

$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$

$\Rightarrow p^2-q^2\equiv 0\pmod 4$

$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$

$\Rightarrow A\vdots 4(**)$

Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$

 

22 tháng 3 2022

Akai Haruma!(mod 5) và (mod 4) là j vậy 

2 tháng 1 2020

Vì p,q là 2 SNT >5

Suy ra p,q là số lẻ

Suy ra p,q chia hết cho 2

Suy ra p^4,q^4 chia hết cho 4

Suy ra p^4+2019q^4 chia hết cho 4 (1)

Mặt khác: Xét 5 TH 5k, 5k+1, 5k+2, 5k+3, 5k+4

Suy ra p^4+2019q^4 chia hết cho 5 (2)

Mà (5;4)=1 (3)

Từ (1), (2) và (3) suy ra đpcm

2 tháng 1 2020

cảm ơn bn nhiều nha nhưng cách này mk làm r mk cần cách khac nhanh hơn

7 tháng 1 2023

giúp mình với mình cần gấp

 

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?1, Số tận cùng là 4 thì chia hết cho 22, Số chia hết cho 2 thì có chữ số tận cùng là 43, Số chia hết cho 5 thì có chữ số tận cùng là 54, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 75, Số chia hết cho 9 có thể chia hết cho 36, Số chia hết cho 3 có thể chia hết cho 97, Nếu một số không chia hết cho...
Đọc tiếp

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

1, Số tận cùng là 4 thì chia hết cho 2

2, Số chia hết cho 2 thì có chữ số tận cùng là 4

3, Số chia hết cho 5 thì có chữ số tận cùng là 5

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7

5, Số chia hết cho 9 có thể chia hết cho 3

6, Số chia hết cho 3 có thể chia hết cho 9

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó

10, Hợp số là số tự nhiên nhiều hơn 2 ước

11, Một số nguyên tố đều là số lẻ

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố

16, Hai số nguyên tố là hai số nguyên tố cùng nhau 

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau 

1

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht

24 tháng 7 2018

Câu hỏi của Bùi Quang Vinh - Toán lớp 6 - Học toán với OnlineMath fedg

1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240(p4−1) ⋮ 240 và (q4−1) ⋮ 240(q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240(p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)(p4−1)=(p−1)(p+1)(p2+1)
vì pp là số nguyến tố lớn hơn 55 nên pp là số lẻ
⟹(p−1)(p+1)⟹(p−1)(p+1) là tích của 22 số lẻ liên tiếp nên chia hết cho 88 (1)(1)
Do p>5p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)(2)
mặt khác vì pp là số lẻ nên p2p2 là số lẻ →p2+1→p2+1 là số chẵn nên p2+1 ⋮ 2p2+1 ⋮ 2 (3)(3)
giờ cần chứng minh p4−1 ⋮ 5p4−1 ⋮ 5:
pp có thể có dạng:
p=5k+1→p−1 ⋮ 5p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5kp=5k mà pp là số nguyến tố nên k=1→p=5k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5⟹p4−1 ⋮ 5 (4)(4)
từ (1),(2),(3),(4)(1),(2),(3),(4), suy ra p4−1p4−1 chia hết cho 2.3.5.82.3.5.8 hay p4−1 ⋮ 240p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240q4−1 ⋮ 240
Kết luận.......................