cho 7 STN bất kì. CMR ta luôn chọn đc 4 số có tổng chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BA SO TU NHIEN bat ki thuoc hai dang chan va le
theo nguyen li dirich le thi se co it nhat hai so co cung dang chia het cho 2
=>trong 7 so tu nhien thi se co hai so chia het cho 2
ta goi hai so la a1 va a2
=>a1+a2 chia het cho 2=>a1+a2=2k
con lai 5so tuong tu ta lai co 2 so co tong chia het cho hai dat la a3 va a4
=>a3+a4 =2q
con lai ba so ta lai duoc hai so co tong chia het cho 2 dat la a5 va a6
=> a5 +a6=2n
vay ......................
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có : a+b+c chia hết cho 4 cà giả sử a,b,c đều lẻ vậy a+b+c k chia hết cho 4 (vô lý )
vậy ta luôn chọn dc 4 số có tổng chia hết cho 4 trong 7 số bất kỳ ( thao nguyên tắc dirichlet ) (dpcm)
Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
Giải:
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)
A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2
* Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n)
Còn 3 số C F G sẽ có 1 cặp chia hết cho 2
( C + F) = 2 p Với m,n,p cúng là số tự nhiên
Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.
*Giả thử (m + n) =2 q ( q là số TN) thì ta có
(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)
Giải:
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)
A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2
* Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n)
Còn 3 số C F G sẽ có 1 cặp chia hết cho 2
( C + F) = 2 p Với m,n,p cúng là số tự nhiên
Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.
*Giả thử (m + n) =2 q ( q là số TN) thì ta có
(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)
Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4
mình quên câu này dễ quá nên các bạn đừng trả lời ! nhéeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
- Nếu trong 5 số lẻ đó có 4 số có tổng chia hết cho 4 thì bài toán được chứng minh
- Nếu trong 5 số lẻ đó có 4 số không có tổng chia hết cho 4
Khi các tổng S1,S2 ,....,S5 khi chia cho 4 sẽ có thể dử là 1,2,3 [ 3 khả năng]
Do đó theo nguyên lí Đi - rích - lê sẽ tồn tại hai tổng Sm , Sn [ m > n ] khi đó sẽ cùng dư khi : 4
-> Sm-Sn chia hết cho 4
[ a1 + a2+a3+.........+am ] - [ a1 + a2+a3+.........+an ]
<=> an+1 + an+2 + ......................... + am chia hết cho 4
Vật ttoorng các số an+1 + an+2 + ......................... + am chia hết cho 4
Từ 2 th => bài toán được chứng minh
Bạn tham khảo bài tương tự ở đây nhé.
Bài toán 120 - Học toán với OnlineMath