Cho A(5;-1) B(-1;3) Khi đó toạ độ M thuộc Ox để MA2+ 2MB2 nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath
5 + 52 + 53 + ... + 5100
1.Số các số hạng của dãy phép tính trên là:
(100-1):1+1 = 100 (số hạng)
Mỗi chữ số trên đều là số lẻ
=> Số lẻ + số lẻ = số chẵn
Mà có 100 số hạng => có tất cả 50 cặp.
Từ đó ta có thể biết là dãy phép tính trên chia hết cho 2.
2. Chắc chắn dãy số trên chia hết cho 5, sở dĩ nó được tạo nên bảo các lũy thừa có cơ số là 5, hay tất cả các lũy thừa ấy điều chia hết cho 5. Sử dụng tính chất chia hết của một tổng ta thấy dãy số trên chắc chắn chia hết cho 5.
=> Dãy số trên chia hết cho 2 và 5, hay nói cách khác là chia hết cho 10.
có số các số là:(100-2+1)+2=101
5 mũ mấy vẫn có tận cùng là 5
tận cùng của A là :101 x 5=505 ( tận cùng số đó là 5 chứ ko phải 505)
=> A chia hết cho 5
tớ nghĩ nó ko chia hết cho 2 vì tận cùng là 5
a) x có dạng: x = 5k ; k ∈ N
b) x có dạng: x = 5k + l; x = 5k+2; x = 5k + 3; x = 5k+4 k ∈ N
\(A=5^1+5^2+5^3+...+5^{299}+5^{300}\)
\(=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{299}+5^{300}\right)\)
\(=5^1\left(1+5\right)+5^3\left(1+5\right)+...+5^{299}\left(1+5\right)\)
\(=6\left(5^1+5^3+...+5^{299}\right)\) chia hết cho \(6\).
\(A=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2+5^3+5^4+5^5+5^6\right)+....+5^{2016}\left(5+5^2+5^3+5^4+5^5+5^6\right)\\ =19530+....+5^{2016}.19530\\ =210.93+...+5^{2016}.210.93\\ =93.210.\left(1+...+5^{2016}\right)⋮93\left(ĐPCM\right)\)
Gọi \(M\left(x,0\right)\in Ox\)
ta có : \(MA^2+2MB^2=\left(x-5\right)^2+1+2\left[\left(x+1\right)^2+9\right]=3x^2-6x+46=3\left(x-1\right)^2+43\ge43\)
dấu bằng xảy ra khi x=1
Vậy tọa độ M khi đó là (1,0)
1,0 nha