K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021

đề a sai nó là  \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

a.

\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)

b.

\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)

c.

\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

d.

\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)

e.

Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)

Khi đó:

$a^3+b^3=4$

$ab=\frac{2}{3}$

$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$

$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$

$(E-2)(E^2+2E+2)=0$

Dễ thấy $E^2+2E+2>0$ nên $E-2=0$

$\Leftrightarrow E=2$

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)

\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)

\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)

\(=-\sqrt{5}\)

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

29 tháng 11 2023

Bài 1:

a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)

\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)

\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)

b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)

c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(=\sqrt{3}-\sqrt{3}-1=-1\)

Bài 2:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: A=2

=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)

=>\(2\sqrt{x}-2=\sqrt{x}\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1\inƯ\left(1\right)\)

=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{2;0\right\}\)

=>\(x\in\left\{4;0\right\}\)

21 tháng 12 2023

Bài 1:

a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-16\sqrt{3}\)

b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)

\(=3-\sqrt{6}+\sqrt{6}-1\)

=3-1=2

c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)

\(=\sqrt{15}+4-\sqrt{15}=4\)

d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)

Bài 2:

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x-4=-3x+3\)

=>\(\dfrac{1}{2}x+3x=3+4\)

=>\(\dfrac{7}{2}x=7\)

=>x=2

Thay x=2 vào y=-3x+3, ta được:

\(y=-3\cdot2+3=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)

22 tháng 8 2023

Bài 1: 

a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)

\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)

\(=\sqrt{1,44\cdot0,81}\)

\(=\sqrt{1,44}\cdot\sqrt{0,81}\)

\(=1,2\cdot0,9\)

\(=1,08\)

b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)

\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)

\(=9-4\sqrt{5}+4\sqrt{5}\)

\(=9\)

c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)

\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)

\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)

\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)

22 tháng 8 2023

Bài 2: Ta có: 

\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)