cho x,y nguyên dương thỏa mãn xy-5x+2y=30
khi đó tổng giá trị x tìm được là ...
nhanh giúp mình bạn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y nguyên dương thỏa mãn xy-5x+2y=30
khi đó tổng giá trị x tìm được là ...
nhanh giúp mình bạn ơi
xy-5x+2y=30 <=> 2y-30=5x-xy
<=> 2y-30=x(5-y) => \(x=\frac{2y-30}{5-y}=-\frac{2y-30}{y-5}=-\frac{2y-10-20}{y-5}=-\frac{2\left(y-5\right)-20}{y-5}\)
=> \(x=-2+\frac{20}{y-5}\)
xy-5x+2y=30
\(\Rightarrow xy-5x+2y-10=20\)
\(\Rightarrow\left(xy-5x\right)+\left(2y-10\right)=20\)
\(\Rightarrow x\left(y-5\right)+2\left(y-5\right)=20\)
\(\Rightarrow\left(x+2\right)\left(y-5\right)=20\)
Xét Ư(20) ra...
trả lời cho bạn câu 1 này , bài này rất hay nhé :
vì x,y >0 nên ta xét y từ 6-15 thì sẽ tìm ra đc giá trị của x
mình làm thế là cũng có cái lý do là nếu y < 5 thì nếu thay y = 5 vao biểu thức ta có xy-5x+2y=30 =>5x-5x+8=30=> 0=30-9=26( vô lý vì lúc này x sẽ là 1 số âm), , và các giá trị y < 5 đều cho ta giá trị của x là 1 số âm , vậy là mình đã chặn xg y >5
+ với cách chặn y < hoặc bằng 15 với lý do ( nếu thay y > 15, ví dụ 16 chẳng hạn thì ta có xy-5x+2y=30 => 16x-5x+32 =30 => 11x=-2 ( vô lý vì lúc này x nhận giá trị âm )
vì vậy mình thử y từ 6-> 15 đc các giá trị sau của x thỏa mãn này ( các giá trị của x)
X=18; X=8 ; X=3 ; X=2 ; X=0
vì người ta ko hỏi đến ý nên ta ko phải tính giá trị của Y chỉ quan tâm đến giá trị của x thôi
vì bài này mình cũng mới biết nên có chỗ nào tính toán sai các bạn bảo mình nhé
mình ra tổng các giá trị của x=18+8+2+3+0=31
\(x\left(y-5\right)+2y=30\)
\(x=\frac{30-2y}{y-5}=\frac{20-2\left(y-5\right)}{y-5}=\frac{20}{y-5}-2\)
\(x>0\Rightarrow5< y< 10\Rightarrow y=\left\{6,7\right\}\)
\(x=\left\{18,8\right\}tongx=26\)
Lời giải:
Với $x,y$ dương thì $\frac{2x+2y}{xy+2}$ nếu nhận giá trị nguyên thì là nguyên dương
$\Rightarrow 2x+2y\geq xy+2$
$\Leftrightarrow (x-2)(y-2)-2\leq 0(*)$
Nếu $x,y> 4$ thì $(*)$ không thể xảy ra. Do đó tồn tại ít nhất 1 số trong 2 số $\leq 4$
Giả sử $y=\min (x,y)$.
Nếu $y=1$ thì $\frac{2x+2y}{xy+2}=\frac{2x+2}{x+2}=2-\frac{2}{x+2}$ nguyên khi $x+2$ là ước của $2$. Mà $x+2\geq 3$ với mọi $x$ nguyên dương nên TH này loại
Nếu $y=2$ thì $\frac{2x+2y}{xy+2}=\frac{2x+4}{2x+2}=\frac{x+2}{x+1}=1+\frac{1}{x+1}$ nguyên khi $x+1$ là ước của $1$. Mà $x+1\geq 2$ nên TH này cũng loại nốt.
Nếu $y=3$ thì $0\geq (x-2)(y-2)-2=x-2-2=x-4$
$\Rightarrow 4\geq x$. Vì $x\geq y$ nên $x=3$ hoặc $x=4$. Thay vô phân thức ban đầu ta có $(x,y)=(4,3)$ thỏa mãn
Nếu $y=4$ thì $0\geq (x-2)(y-2)-2=2(x-2)-2$
$\Rightarrow x\leq 3$. Mà $x\geq y$ nên loại.
Vậy $(x,y)=(4,3)$ và hoán vị $(3,4)$
\(xy-5x+2y=30\)
\(\Rightarrow\left(xy-5x\right)+\left(2y-10\right)=20\)
\(\Rightarrow x\left(y-5\right)+2\left(y-5\right)=20\)
\(\Rightarrow\left(x+2\right)\left(y-5\right)=20\)
Tổng các gtrị x là 31