A = (a/a+b+c) + (b/ b+c+d) + (c/c+d+a)+ (d/d+a+b) (a,b,c>0) Tính A [ A+1]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất dãy tỉ số bằng nhau ta có a/(b+c+d)=b/(c+d+a)=c/(a+b+d)=d/(a+b+c)=(a+b+c+d)/(b+c+d+c+d+a+a+b+d+a+b+c)
=(a+b+c+d)/(3a+3b+3c+3d)=1/3
vì a+b+c+d khác 0 nên a=b=c=d
từ đó =>A=(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)=1+1+1+1=4
từ cái biết cộng 1 vào mỗi vế dấu bằng
ta có (a+b+c+d)/(b+c+d) = (a+b+c+d)/(c+d+a)=(a+b+c+d)/(a+b+d)=(a+b+c+d)/(a+b+c)
vi a+b+c+d khác 0 nên ta có thể chia mỗi vế cho a+b+c+d
<=>b+c+d=c+d+a=a+b+d=a+b+c
<=>a=b= d=c
thay vào A = 1+1+1+1=4
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...
(325 - 47) + (175 - 53)
=325 - 47 + 175 -53
=(325 + 175 ) - (47 + 53)
= 500 - 100
= 400
b)(756-217)-(183-44)
=756-217-183+44
=(756+44)-(217+183)
=800-400
=400
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)