tìm số a thỏa mãn a/3=b/5, 3a+b=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+3a^2+5=5^b\)
\(\Rightarrow a^2\left(a+3\right)+5=5^b\)
\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)
\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
\(3a+3b+\dfrac{1}{a+b}=\dfrac{a+b}{25}+\dfrac{1}{a+b}+\dfrac{74\left(a+b\right)}{25}\ge2.\sqrt{\dfrac{a+b}{25}.\dfrac{1}{a+b}}+\dfrac{74}{25}.5=\dfrac{76}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{76}{5}\)
Ta có: 3a + 3b + \(\dfrac{1}{a+b}\) = \(\dfrac{1}{a+b}+\dfrac{a+b}{25}+\dfrac{74}{25}\left(a+b\right)\)
Áp dụng BDT Co-si, ta có:
\(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge2\sqrt{\dfrac{1}{a+b}.\dfrac{a+b}{25}}\)
=> \(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge\dfrac{2}{5}\)
Mà \(\dfrac{74}{25}\left(a+b\right)\ge\dfrac{74}{5}\)
=> \(3\left(a+b\right)+\dfrac{1}{a+b}\ge\dfrac{76}{5}\)
Dấu "=" xảy ra <=> \(a=b=\dfrac{5}{2}\)
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
|x-y|+|x+y|=2018^x+1
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.https://www.youtube.com/redirect?q=http%3A%2F%2Fkhogamehack.com%2Fgame-hack%2Fgame-hungry-shark-evolution-hack-full-cho-android%2F&event=video_description&redir_token=grNQna4phcna2n7eily5jiOT7JZ8MTUyNDMxODkwMEAxNTI0MjMyNTAw&v=FRsXISyRHhA&html_redirect=1
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{3a}{3.3}=\frac{b}{5}=\frac{3a+b}{9+5}=\frac{2}{14}=\frac{1}{7}\)
\(\hept{\begin{cases}\frac{a}{3}=\frac{1}{7}\Rightarrow a=\frac{1}{7}.3=\frac{3}{7}\\\frac{b}{5}=\frac{1}{7}\Rightarrow b=\frac{1}{7}.5=\frac{5}{7}\end{cases}}\)
Vậy a=3/7
hịu
ta có:\(\frac{a}{3}\) =\(\frac{b}{5}\) =>\(\frac{3a}{9}\) =\(\frac{b}{5}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{9}\) = \(\frac{b}{5}\) =\(\frac{3a-b}{9-5}\) =\(\frac{1}{2}\)
\(\frac{a}{3}\) = \(\frac{1}{2}\) => a=1,5