K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2021

\(\Leftrightarrow x^4-2x^2-1=-3m\)

Xét hàm \(f\left(x\right)=x^4-2x^2-1\)

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

BBT:

undefined

Từ BBT ta thấy \(y=-3m\) cắt \(y=f\left(x\right)\) tại 3 điểm pb khi \(-2< -3m< -1\)

\(\Leftrightarrow\dfrac{1}{3}< m< \dfrac{2}{3}\)

5 tháng 6 2021

Xét \(\Delta'=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\)\(\ge0;\forall m\)

=>Pt luôn có hai nghiệm 

Theo viet có: \(x_1+x_2=2\)

Do \(x_1^2\) là một nghiệm của pt \(\Rightarrow x_1^2-2x_1-m^2+2m=0\)\(\Leftrightarrow x_1^2=2x_1+m^2-2m\)

\(x_1^2+2x_2=3m\)

\(\Leftrightarrow2x_1+2x_2+m^2-2m=3m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Leftrightarrow4+m^2-5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)

Vậy...

16 tháng 2 2021

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

16 tháng 2 2021

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

26 tháng 3 2020

2 trường hợp

25 tháng 3 2020

\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m+1\right)x+m^2+m=0\)

Để PT có 4 nghiệm phân biệt thì 

\(\Leftrightarrow\hept{\begin{cases}1\ne0\left(lđ\right)\\m^2+m\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-1\end{cases}}}\)

Vậy \(m\ne0;m\ne-1\)thì PT có 4 nghiệm phân biệt

29 tháng 12 2020

Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3 

Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3 

Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1 

t f(t) +∞ +∞ -∞ +∞ m -m - 1 2 3 y = 0 3 y = 0 8-6m 8-6m Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi 

8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)

Nếu m < 3, yêu cầu bài toán thỏa mãn khi 

8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))

Nếu m = 3 thì phương trình trở thành 

t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)

tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán 

Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)

a: Thay m=2 vào pt, ta được:

\(x^2-2x+2=0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)

=>4m>12

hay m>3

17 tháng 1 2022

b, bạn làm bằng định lí Vi-ét đk ạ?

10 tháng 8 2023

∆' = (-2)² - [-(m² + 3m)]

= 4 + m² + 3m

= m² + 3m + 9/4 + 7/4

= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R

Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R

Δ=(-4)^2-4(-m^2-3m)

=16+4m^2+12m

=4m^2+12m+16

Để phương trình có 2 nghiệm phân biệt thì

4m^2+12m+16>0

=>m^2+3m+4>0

=>m^2+3m+9/4+7/4>0

=>(m+3/2)^2+7/4>0(luôn đúng)

17 tháng 4 2021

Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)

suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$

Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$

nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với

$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$

$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$

Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$

Vậy $m>-1;m \neq 0$ thỏa mãn đề

Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)

\(=9m^2+12m+4-12m-4\)

\(=9m^2\ge0\forall m\)

Do đó: Phương trình luôn có 2 nghiệm

Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)

hay \(m\ne0\)

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)

Kết hợp ĐKXĐ, ta được: -3<m<-2

Vậy: -3<m<-2