K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

E=(-a-b+c+d)-(d+c-b-2a)

E=-a-b+c+d-d-c+b+2a

E=-a+(-)b+c+d+(-d)+(-c)+b+2a

E=-a+(-b)+c+d+(-d)+(-c)+b+2a

E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a

8 tháng 2 2017

thanks nhiều nha ĐỨC THỊNH

3 tháng 1 2016

Ta có:

\(a^2+b^2=c^2+d^2\)

nên  \(a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\)  \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)  \(\left(1\right)\)

Lại có:   \(a+b=c+d\)   \(\left(2\right)\)

\(\Rightarrow\)  \(a-c=d-b\)

+) Nếu   \(a-c=0\)   \(\Rightarrow\)   \(a=c\)  và   \(d-b=0\)  \(\Rightarrow\)  \(d=b\)  thì  biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)  

luôn đúng với mọi  \(a;b;c;d\)

+)  Nếu  \(a-c\ne0\)   \(\Rightarrow\)   \(a\ne c\)  và   \(d-b\ne0\)  \(\Rightarrow\)  \(d\ne b\)  thì khi đó biểu thức  \(\left(1\right)\)  trở thành: 

\(a+c=b+d\)  \(\left(3\right)\)

Cộng  \(\left(2\right)\)  và   \(\left(3\right)\)  vế theo vế, ta được:

\(2a+b+c=2d+b+c\)

\(\Rightarrow\)  \(2a=2d\)

\(\Rightarrow\)  \(a=d\)

Từ đây, ta dễ dàng suy ra được   \(b=c\)   (theo  \(\left(2\right);\left(3\right)\)  )  

Vì  \(a=d\)   và   \(b=c\)  nên do đó, biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi  \(a;b;c;d\)

Vậy,   ...

31 tháng 8 2017

Lưu ý: dấu " / " là gạch ngang phân số

31 tháng 8 2017

Thao khảo nè :

  (a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Nguồn: Yahoo hỏi đáp

14 tháng 8 2015

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

11 tháng 4 2017

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

3 tháng 11 2017

Chứng minh bằng phản chứng, giả sử \(a>b>c>d>e\), thế lần lượt sẽ trái với giả thiết

27 tháng 1 2023

\(D=\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)\)

\(D=a+b-c-a+b-c+b+c-a-a+b+c\)

\(D=\left(a-a-a-a\right)+\left(b+b+b+b\right)+\left(c+c-c-c\right)\)

\(D=4b-3a\)

25 tháng 9 2017

Ta có hình vẽ:

A B C D

Theo đề bài: A,B,C thẳng hàng

B,C,D thẳng hàng

Ta thấy từ hai điều kiện trên ta thấy B,C đều thẳng hàng.

Vì A và D thẳng hàng với B,C

=> 4 điểm A,B,C,D thẳng hàng

Đs:

Nói thêm:   Nhìn vào hình vẽ ta cũng thấy 4 điểm A,B,C,D thẳng hàng