cho 2 biểu thức a = ( a + c ) - ( d + b ) và b = ( a - d ) + ( c - b ) . chứng minh rằng a = b
giải đầy đủ giùm mìnhHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
Ta có:
\(a^2+b^2=c^2+d^2\)
nên \(a^2-c^2=d^2-b^2\)
\(\Leftrightarrow\) \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\) \(\left(1\right)\)
Lại có: \(a+b=c+d\) \(\left(2\right)\)
\(\Rightarrow\) \(a-c=d-b\)
+) Nếu \(a-c=0\) \(\Rightarrow\) \(a=c\) và \(d-b=0\) \(\Rightarrow\) \(d=b\) thì biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)
luôn đúng với mọi \(a;b;c;d\)
+) Nếu \(a-c\ne0\) \(\Rightarrow\) \(a\ne c\) và \(d-b\ne0\) \(\Rightarrow\) \(d\ne b\) thì khi đó biểu thức \(\left(1\right)\) trở thành:
\(a+c=b+d\) \(\left(3\right)\)
Cộng \(\left(2\right)\) và \(\left(3\right)\) vế theo vế, ta được:
\(2a+b+c=2d+b+c\)
\(\Rightarrow\) \(2a=2d\)
\(\Rightarrow\) \(a=d\)
Từ đây, ta dễ dàng suy ra được \(b=c\) (theo \(\left(2\right);\left(3\right)\) )
Vì \(a=d\) và \(b=c\) nên do đó, biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi \(a;b;c;d\)
Vậy, ...
Thao khảo nè :
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Nguồn: Yahoo hỏi đáp
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
Chứng minh bằng phản chứng, giả sử \(a>b>c>d>e\), thế lần lượt sẽ trái với giả thiết
\(D=\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)\)
\(D=a+b-c-a+b-c+b+c-a-a+b+c\)
\(D=\left(a-a-a-a\right)+\left(b+b+b+b\right)+\left(c+c-c-c\right)\)
\(D=4b-3a\)