K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)

\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)

\(\Leftrightarrow4a^2-8ab+4b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)

=> đpcm

11 tháng 12 2016

8(a2+b2) = (2a + 2b)2

=>8a2+8b2= 4a2 + 8ab + 4b

=> 4a2 + 4b2 = 8ab

=> 4a2 + 4b2 - 8ab = 0

=> (2a - 2b)2 =0

=> 2a - 2b = 0

=> 2(a-b)=0

=>a-b=0

=> a=b

 

4 tháng 4 2016

Sai đề rồi nha bạn! 

Đề:  Cho  \(a,b,c>0\)  thỏa mãn  \(a^2+b^2+c^2=\frac{5}{3}.\)  Chứng minh rằng:  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Lời giải:

Với mọi  \(a,b,c\in R\)  thì ta luôn có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)  \(\left(\text{*}\right)\) 

Ta cần chứng minh  \(\left(\text{*}\right)\)  là bất đẳng thức đúng!

Thật vậy,  từ  \(\left(\text{*}\right)\)  \(\Leftrightarrow\)  \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

                             \(\Leftrightarrow\)  \(\left(a+b-c\right)^2\ge0\)  \(\left(\text{**}\right)\)

Bất đẳng thức  \(\left(\text{**}\right)\)  hiển nhiên đúng với mọi  \(a,b,c\) , mà các phép biến đổi trên tương đương 

Do đó, bất đẳng thức  \(\left(\text{*}\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi  \(a+b=c\)

Mặt khác,  \(a^2+b^2+c^2=\frac{5}{3}\)  (theo giả thiết)

Mà  \(\frac{5}{3}=1\frac{2}{3}<2\)

\(\Rightarrow\)  \(a^2+b^2+c^2<2\)  \(\left(\text{***}\right)\)

Từ  \(\left(\text{*}\right)\) kết hợp với  \(\left(\text{***}\right)\), ta có thể viết 'kép' lại:  \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)

Suy ra  \(2bc+2ca-2ab<2\)

Khi đó, vì  \(abc>0\) (do  \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho  \(2abc\), ta được:

\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)

\(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Vậy, với  \(a,b,c\)  là các số thực dương thỏa mãn điều kiện  \(a^2+b^2+c^2=\frac{5}{3}\)  thì ta luôn chứng minh được:

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

4 tháng 6 2016

chung minh a=b=c, suy ra M=1

15 tháng 10 2021

\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)

\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)

23 tháng 5 2019

Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0

Áp dụng ta được

\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)

....................................................

Khi đó

\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)

Vậy VT<3

19 tháng 6 2016

S lon nhat bang 3 khi trong 4 so a,b, cd co 1 so bang 1con 3 so  bang

20 tháng 2 2018

giup minh voi