K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

16 tháng 1 2016

a) ta có: n+2 chia hết cho n-3

=>(n-3)+5 chia hết cho n-3

Mà n-3 chia hết cho n-3

=>5 chia hết cho n-3

=> n-3 thuộc Ư(5)={1;5;-1;-5}

=> n thuộc {4;8;2;-2}

b) Ta có: 6n+1 chia hết cho 3n-1

=>(6n-2)+2+1 chia hết cho 3n-1

=>2(3n-1) +3 chia hết cho 3n-1

Mà 2(3n-1) chia hết cho 3n-1

=> 3 chia hết cho 3n-1

=> 3n-1 thuộc Ư(3)={1;3;-1;-3}

=> 3n thuộc {2;4;0;-2}

=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}

Mà n thuộc Z

=>n=0

AH
Akai Haruma
Giáo viên
30 tháng 9

Lời giải:

$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$

Để $A$ là scp thì $n^2+3n+3$ là scp.

Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.

$\Rightarrow 4n^2+12n+12=4x^2$

$\Rightarrow (2n+3)^2+3=4x^2$

$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$

Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.