K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

X= 3\(\frac{7}{10}\)

Tick cho mình nha!!!

15 tháng 12 2016

cachs giải đâu

 

15 tháng 9 2021

\(\left(x-5\right)^2=\left(18\dfrac{1}{3}:5\right).\dfrac{11}{3}\)

\(\Leftrightarrow\left(x-5\right)^2=\dfrac{55}{3}.\dfrac{1}{5}.\dfrac{11}{3}\)

\(\Leftrightarrow\left(x-5\right)^2=\dfrac{121}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=\dfrac{11}{3}\\x-5=-\dfrac{11}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{26}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

=>36/18>x>8/15

=>2>x>8/15

mà x nguyên

nên x=1

a: =5/6(1/8+2/3)=5/6*19/24=95/144

b: =3/4(7/5-1/2)=27/40

c: =35/24*2/3=35/36

18 tháng 2 2022

ta có: \(2x-1=2\left(x-3\right)+5\)

để \(2x-1⋮x-3\Rightarrow2\left(x-3\right)+5⋮x-3\\ m\text{à }x.nguy\text{ê}n\Rightarrow x-3nguy\text{ê}n\\ \Rightarrow x-3\in\text{Ư}\left(5\right)=\left\{-5;5;1;-1\right\}\)

ta có bảng sau :

x-3-55-11
x-2248

 

 

18 tháng 2 2022

\(\Leftrightarrow2.\left(x-3\right)+5⋮x-3\)

\(do2.\left(x-3\right)⋮x-3\)

\(\Leftrightarrow5⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\)

22 tháng 7 2023

\(x^2+4x+5=2\sqrt{2x+3}\)

\(ĐK:x\ge-\dfrac{3}{2}\)

\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)

\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)

Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)

22 tháng 7 2023

\(\Leftrightarrow x=-1\left(tm\right)\)

Vậy, pt có nghiệm duy nhất là x=-1

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

16 tháng 8 2020

Bài làm:

a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)

+ Nếu x = 6

\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)

+ Nếu x = 4

\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)

16 tháng 8 2020

b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)

\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{4}{3}\)

Thay vào ta được:

\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)

\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)

\(\Leftrightarrow14y=-4\)

\(\Rightarrow y=-\frac{2}{7}\)

Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Bài 1:

$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$

$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:

$2x-1=x-1\Leftrightarrow x=0$  (không thỏa mãn vì $x\geq 1$)

Vậy không tồn tại $x$ thỏa đề.

 

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Bài 2:

Nếu $x\geq \frac{1}{3}$ thì:

$3x-1=2x+3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{3}$ thì:

$1-3x=2x+3$

$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)

Vậy......