Tính diện tích tam giác vuông biết cạnh huyền bằng 13cm, tổng 2 cạnh góc vuông bằng 17cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 cạnh góc vuông là a, b (cm; a,b >0)
Ta có: \(\left\{{}\begin{matrix}a+b=17\left(1\right)\\a^2+b^2=13^2=169\left(Pytago\right)\left(2\right)\end{matrix}\right.\)
(1) <=> (a+b)2 = 289
<=> 2ab = 120
<=> ab = 60
<=> \(S=\dfrac{ab}{2}=\dfrac{60}{2}=30\left(cm^2\right)\)
Gọi độ dài của hai cạnh góc vuông lần lượt là x và y. (Điều kiện: x, y > 0)
Theo đề bài ta có: x 2 + y 2 = 13 2 = 169 x + y = 17
Từ đó tính được (x, y) = (5, 12) hoặc (12,5)
Þ Diện tích tamgiacs đó là: S = 30cm2
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...
Tính cạnh góc vuông của một tam giác vuông biết cạnh huyền bằng 13cm, cạnh góc vuông kia bằng 12cm ?
Đặt tên cho \(\Delta\) này là \(\Delta\)ABC, ta có:
AB & BC là cạnh góc vuông.
AC là cạnh huyền.
Áp dụng định lý py-ta-go vào \(\Delta\)ABC, ta có:
AC2 = AB2 + BC2
132 = 122 + BC2
169 = 144 + BC2
BC2 = 169 - 144 = 25
BC = \(\sqrt{25}\) = 5cm.
Vậy cạnh BC = 5cm hay cạnh góc vuông còn lại của \(\Delta\) = 5cm.
13 12 A B C
Giả sử ∆ABC có ˆA=90∘, BC = 13cm, AC = 12cm
Theo định lý Pytago, ta có: BC2=AB2+AC2
Suy ra: AB2=BC2−AC2=132−122=252
Vậy AB = 5 (cm)
Gọi a và b là 2 cạnh góc vuông. Theo đề ta có:
a^2+b^2=13^2=169. (*)
a+b=17 =>b=17-a thay vào (*), ta được: a^2+(17-a)^2=169 => a =12 và b=5
Chu vi tam giác là: 12+5+13=30cm.
Ai k mk mk k lại!
Chu vi tam giác là:
13 + 17 = 30 (cm)
Đ/s: 30 cm
Bài này cho HS lớp 1 nha bạn!!
Gọi độ dài cạnh góc vuông thứ nhất là x(cm)
=>Độ dài cạnh góc vuông thứ hai là x+4(cm)
Độ dài cạnh huyền là 8cm nên ta có: \(x^2+\left(x+4\right)^2=8^2\)
=>\(x^2+x^2+8x+16-64=0\)
=>\(2x^2+8x-48=0\)
=>\(x^2+4x-24=0\)
=>\(x^2+4x+4-28=0\)
=>\(\left(x+2\right)^2=28\)
=>\(\left[{}\begin{matrix}x+2=2\sqrt{7}\\x+2=-2\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7}-2\left(nhận\right)\\x=-2\sqrt{7}-2\left(loại\right)\end{matrix}\right.\)
Độ dài cạnh góc vuông thứ hai là:
\(2\sqrt{7}-2+4=2\sqrt{7}+2\left(cm\right)\)
Diện tích tam giác vuông ABC là:
\(\dfrac{1}{2}\left(2\sqrt{7}-2\right)\left(2\sqrt{7}+2\right)\)
\(=\dfrac{1}{2}\left(28-4\right)\)
\(=\dfrac{1}{2}\cdot24=12\left(cm^2\right)\)
Gọi độ dài 1 cạnh góc vuông là x (cm, x>7)
độ dài 1 cạnh góc vuông còn lạ là x-7 (cm)
Theo đè là ta có
\(x^2+\left(x-7\right)^2=13^2\)(ĐL Pytago)
\(\Leftrightarrow x^2+x^2-14x+49=169\)
\(\Leftrightarrow2x^2-14x-120=0\)
\(\Leftrightarrow x^2-7x-60=0\)
\(\Leftrightarrow x^2-12x+5x-60=0\)
\(\Leftrightarrow x.\left(x-12\right)+5.\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right).\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-12=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=12\left(TM\right)\\x=-5\left(L\right)\end{cases}}\)
Vậy độ dài 1 cạnh góc vuông là 12cm
dộ dài 1 cạnh góc vuông còn lại là \(12-7=5\left(cm\right)\)
Nhớ k cho mình nhé
nhầm sửa lại :
Cạnh góc vuông còn lại là 21 – x (cm)
Ta có phương trình : 1/2 .x(21 - x) = 54 <=> -x^2 + 21x -108 =0<=> x = 12 và x = 9
=> Độ dài 2 cạnh góc vuông là 12cm và 9 cm
=>độ dài cạnh huyền là \(\sqrt{12^2+9^2}\)=15(cm)
Cho tam giác vuông có diện tích bằng 54 cm2 và tổng độ dài hai góc vuông bằng 21 cm. Tính độ dài cạnh huyền của tam giác vuông đã cho.
Gọi độ dài 1 cạnh góc vuông là x (x:cm ,x > 0)
Cạnh góc vuông còn lại là 21 – x (cm)
Ta có phương trình :x(21 - x) = 54 -x2 + 21x -108 =0x = 12 v x = 9
Độ dài 2 cạnh góc vuông là 12cm và 9 cm
( độ dài cạnh huyền là
Cạnh góc hình vuông còn lại là : 21 - x \((cm)\)
Ta có phương trình \(\frac{1}{2}\cdot x(21-x)=54\Leftrightarrow-x^2+21x-108=0\Leftrightarrow x=12\)và x = 9
Độ dài 2 cạnh góc vuông là : 12 cm và 9 cm
Độ dài cạnh huyền là : \(\sqrt{12^2+9^2}=15(cm)\)
Gọi 2 cạnh góc vuông và cạnh huyền lần lượt là a, b và c
Áp dụng định lí Pi-ta-go, ta có: \(a^2+b^2=c^2=169\)
Mặt khác a+b=17\(\Rightarrow\left(a+b\right)^2=289\Leftrightarrow a^2+b^2+2ab=289\Leftrightarrow169+2ab=289\Rightarrow ab=60\)
\(\Rightarrow S_{\Delta}=\frac{ab}{2}=\frac{60}{2}=30\)
thank nha