log2(x) +log3(X+1) < log4(X+2) +log5(X+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>3\)
\(\log_2x-\dfrac{1}{2}log_2\left(x-3\right)=2\)
\(\Leftrightarrow2\log_2x-log_2\left(x-3\right)=4\)
\(\Leftrightarrow\log_2\dfrac{x^2}{x-3}=4\)
\(\Leftrightarrow\dfrac{x^2}{x-3}=16\)
\(\Leftrightarrow x^2-16x+48=0\Rightarrow\left[{}\begin{matrix}x=12\\x=4\end{matrix}\right.\)
Lời giải:
\(\log_2x+\log_5(x+8)=2\)
\(\Leftrightarrow \log_25.\log_5x+\log_5(x+8)=2\)
\(\Leftrightarrow \log_5(x^{\log_25})+\log_5(x+8)=2\)
\(\Leftrightarrow \log_5(x^{\log_25}(x+8))=2\)
\(\Leftrightarrow x^{\log_25}(x+8)=25\)
PT này mình nghĩ không giải theo kiểu thông thường. Shift-solve thôi ra $x=1,515$
Đáp án C
ĐK: x > –1
Khi đó PT
⇔ log 2 2 x + 7 > log 2 ( x + 1 )
⇔ 1 2 log 2 x + 7 > log 2 x + 1
⇔ log 2 x + 7 > log 2 x + 1 2
⇔ x + 7 > x + 1 2 ⇔ x 2 + x - 6 < 0
⇔ - 3 < x < 2
Kết hợp dk => -1<x<2 => x=0; x=1.