có bài toán lớp 8 này mấy bn giải giùm mjnh với
tính nhanh: \(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+......+\frac{1}{\left(x+9\right)\left(x+10\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{6}\right)x\left(1-\frac{1}{7}\right)x\left(1-\frac{1}{8}\right)x\left(1-\frac{1}{9}\right)x\left(1-\frac{1}{10}\right)\)
\(=\frac{5}{6}x\frac{6}{7}x\frac{7}{8}x\frac{8}{9}x\frac{9}{10}\)
\(=\frac{1}{2}\)
=(1/1-1/6)x(1/1-1/7)x(1/1-1/8)x(1/1-19)x(1/1-1/10)
=5/6x6/6x7/8x8/9x9/10
(1-1/3).(1-1/5).(1-1/7).(1-1/9).(1-1/11).(1-1/13).(1-1/2).(1-1/4).(1-1/6).(1-1/8).(1-1/10)
=2/3.4/5.6/7.8/9.10/11.12/13.1/2.3/4.5/6.7/8.9/10
=8/15.48/63.120/143.3/8.35/48.9/10
=384/945.360/1144.315/480
=138240/1081080.315/480
=43545600/518918400=84/1001
\(A=\frac{1}{x.\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow2A=\frac{2}{x.\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{2}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right)\)
Ta có: \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+.....+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+9}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{x+11-x+1}{\left(x+1\right)\left(x+11\right)}=\frac{12}{\left(x+1\right)\left(x+11\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(=\frac{1+1+1+1+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+11\right)\left(x+3\right)\left(x+9\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{5}{\left(x^2+11x+x+11\right)\left(x^2+9x+3x+27\right)\left(x^2+7x+5x+35\right)}\)
\(=\frac{5}{\left(x^2+12x+11\right)\left(x^2+12x+27\right)\left(x^2+12x+35\right)}\)
A=\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+11}\)
Rút gọn hết đi ta có \(\frac{1}{x+1}-\frac{1}{x+11}\)=\(\frac{x+11}{\left(x+1\right).\left(x+11\right)}-\frac{x+1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{x+11-x-1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{10}{x^2+12x+11}\)
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
Bạn chú ý cách viết phương trình.
Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.
\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)
\(=16\)
Phương trình đã cho trở thành
\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+9}-\frac{1}{x+10}\)
\(=\frac{2}{x}-\frac{1}{x+10}=\frac{2\left(x+10\right)}{x\left(x+10\right)}-\frac{x}{x\left(x+10\right)}=\frac{2x+20-x}{x\left(x+10\right)}=\frac{x+20}{x^2+10x}\)
lớp 8 hẽ