K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2021

a. Hàm đồng biến \(\Leftrightarrow2m+1>0\Rightarrow m>-\dfrac{1}{2}\)

b. Do A thuộc Ox \(\Rightarrow y_A=0\Rightarrow\left(2m+1\right)x_A-2=0\Rightarrow x_A=\dfrac{2}{2m+1}\)

\(\Rightarrow A\left(\dfrac{2}{2m+1};0\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{2m+1}\right|\)

Do B thuộc Oy \(\Rightarrow x_B=0\Rightarrow y_B=\left(2m+1\right).0-2=-2\Rightarrow B\left(0;-2\right)\)

\(\Rightarrow OB=\left|y_B\right|=2\)

Gọi H là chân đường vuông góc hạ từ O xuống d \(\Rightarrow OH=\sqrt{2}\)

Áp dụng hệ thức lượng trong tam giác vuông OAB với đường cao OH:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Leftrightarrow\dfrac{1}{2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)

\(\Rightarrow\left(2m+1\right)^2=1\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

c.

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\left|\dfrac{2}{2m+1}\right|.2=\dfrac{1}{2}\)

\(\Leftrightarrow\left|2m+1\right|=4\Rightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)

17 tháng 11 2018

Gợi ý :

a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )

b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1

c) Gọi khoảng cách từ O tới (d) là OH

OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy

=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m

d)  Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy

e) thay x vào có kết quả

f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3)   )

15 tháng 12 2021

PT giao Ox, Oy là: 

\(y=0\Leftrightarrow x=\dfrac{2}{2m+1}\Leftrightarrow A\left(\dfrac{2}{2m+1};0\right)\Leftrightarrow OA=\dfrac{2}{\left|2m+1\right|}\\ x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\Leftrightarrow OB=2\)

\(a,\) Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=\sqrt{2}\)

Ap dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{\left(2m+1\right)^2}{4}=\dfrac{1}{4}\Leftrightarrow4m^2+4m+1=1\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow OB\cdot OA=1\\ \Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)