tính các tận cùng của các kết quả sau đây bằng cách nhất
a)13^2001^2001
b)75^52-21^8
c)125^91+126^92
d)11^6 +12^6+13^6+...=16^6
e)9^1931.7^1979
g)2005^2001.2008^999
h)9^2004+1357^1979
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5}{11}.\dfrac{5}{7}+\dfrac{5}{11}.\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}.1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=\dfrac{11}{11}=1\)
\(B=\dfrac{3}{13}.\dfrac{6}{11}+\dfrac{3}{13}.\dfrac{9}{11}-\dfrac{3}{13}.\dfrac{4}{11}=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)=\dfrac{3}{13}.1=\dfrac{3}{13}\)
\(C=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right).0=0\)
a) \(...=-\dfrac{12}{46}-\dfrac{15}{21}+\dfrac{3}{7}-\dfrac{7}{23}\)
\(=-\dfrac{12}{46}-\dfrac{7}{23}-\dfrac{15}{21}+\dfrac{3}{7}\)
\(=-\dfrac{6}{23}-\dfrac{7}{23}-\dfrac{5}{7}+\dfrac{3}{7}\)
\(=-\dfrac{13}{23}-\dfrac{2}{7}\)
\(=-\dfrac{13.7}{23.7}-\dfrac{2.23}{23.7}\)
\(=-\dfrac{91}{161}-\dfrac{46}{161}=-\dfrac{137}{161}\)
b) \(...=-21+\dfrac{7}{9}-\dfrac{3}{17}+\dfrac{25}{9}\)
\(=-21-\dfrac{3}{17}+\dfrac{7}{9}+\dfrac{25}{9}\)
\(=-21-\dfrac{3}{17}+\dfrac{32}{9}\)
\(=-\dfrac{3213}{153}-\dfrac{27}{153}+\dfrac{544}{153}=-\dfrac{2696}{153}\)
Bài 4:
a: \(=\dfrac{11}{21}\left(\dfrac{7}{4}+\dfrac{5}{4}\right)=\dfrac{11}{21}\cdot3=\dfrac{11}{7}\)
b: \(=\dfrac{6}{13}\left(\dfrac{23}{14}-\dfrac{9}{14}\right)=\dfrac{6}{13}\)