K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên AM=1/2BC(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

a: Xét tứ giác ANCB có

M là trung điểm của AC

M là trung điểm của BN

Do đó; ANCB là hình bình hành

Suy ra: CN//AB và CN=AB

=>CN⊥AC

b: Ta có: ANCB là hình bình hành

nên AN=BC và AN//BC

29 tháng 11 2019

Bài 4:

29 tháng 11 2019

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

5 tháng 10 2019

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

5 tháng 10 2019

Hỏi đáp Toán

30 tháng 12 2016

đề sai rồi. Làm gì có tam giác ABA?

23 tháng 9 2019

Hình ảnh có liên quan

a) Xét 2 \(\Delta\) \(ABM\)\(ACM\) có:

\(AB=AC\left(gt\right)\)

\(BM=CM\) (vì M là trung điểm của \(BC\))

Cạnh AM chung

=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

=> \(AM\) là đường phân giác của \(\widehat{A}.\)

b) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

\(AM\) là đường phân giác (cmt) đồng thời \(AM\) cũng là đường cao của \(\Delta ABC.\)

=> \(AM\) là đường cao của \(\Delta ABC.\)

c) Theo câu b) ta có \(\Delta ABC\) cân tại A.

\(AM\) là đường cao đồng thời \(AM\) cũng là đường trung trực của \(\Delta ABC.\)

=> \(AM\) là đường trung trực của \(BC.\)

Chúc bạn học tốt!