nếu 1 và 2 là 2 nghiệm của f(x)=x^3+ax^2+bx+c và a+b= -16 thì a có giá trị là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 /
Cho f(x) là một đa thức thỏa mãn thì : 3 . f(x) + 2.f(1-x) = 2x + 9
f(2) = ??????
3/
Min của a2 + 4b2 - 10a
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(1\right)=a+b+c=0\)
\(f\left(-1\right)=a-b+c=0\)
\(\Leftrightarrow f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c=0\)
\(\Leftrightarrow2a+2c=0\)
\(\Leftrightarrow2a=-2c\)
\(\Leftrightarrow a=-c\)
\(\Rightarrowđpcm\)
\(\left\{{}\begin{matrix}1+a+b+c=0\\8+4a+2b+c=0\\a+b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=-8\\a+b=-16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-\dfrac{41}{2}\\c=15\end{matrix}\right.\)
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Ta có:
\(f\left(1\right)=0=1^3+a.1^2+b.1+c=a+b+c+1\Rightarrow a+b+c=-1\left(1\right)\)
\(f\left(2\right)=0=2^3+a.2^2+b.2+c=8+4a+2b+c\Rightarrow4a+2b+c=-8\left(2\right)\)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow3a+b=-7\)
Mà ta có \(a+b=-16\Rightarrow2a-16=-7\Rightarrow2a=9\Rightarrow a=4,5\)