Giá trị x > 0 nguyên thỏa mãn \(\frac{-7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< \frac{-7}{4}\)
giúp mk mn ơi !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)
\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
\(\Leftrightarrow\frac{11}{14}+\left|\frac{2}{7}-x\right|=\frac{23}{6}\)
\(\Leftrightarrow\left|\frac{2}{7}-x\right|=\frac{64}{21}\)
\(\Leftrightarrow\frac{2}{7}-x=\pm\frac{64}{21}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\frac{2}{7}-x=\frac{64}{21}\\\frac{2}{7}-x=-\frac{64}{21}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{58}{21}\\x=\frac{10}{3}\end{array}\right.\)
Mà \(x>0\)
Vậy \(x=\frac{10}{3}\)
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)
\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)
\(\Rightarrow x=0\)
Vậy x = 0
\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)
TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)
TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ Không xảy ra}\)
Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7
\(\Leftrightarrow\dfrac{1}{6}< \left|\dfrac{2}{7}-x\right|< \dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{7}\right|>\dfrac{1}{6}\\\left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left(-\infty;\dfrac{10}{84}\right)\cup\left(\dfrac{38}{84};+\infty\right)\\x\in\left(-\dfrac{39}{84};\dfrac{87}{84}\right)\end{matrix}\right.\)
\(\Leftrightarrow x\in\left(\dfrac{38}{84};\dfrac{87}{84}\right)\)