Tìm số tự nhiên x nhỏ nhất sao cho x chia cho 5 thì dư 3, x chia cho 7 thì dư 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có : x=5a+1=7b+2
Ta có : 5a=7b+2-1=7b+1=5b+2b+1 =>2b+1 chia hết cho 5
Vì x nhỏ nhất nên ta chọn giá trị nhỏ nhất, ta được b=2
Thay b=2, ta được: x=7.2+2=16
Vậy : x=16
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)
Vì a chia 5 dư 3 nên a có dạng 5k + 3
Vì 5k + 3 chia 7 dư 4 nên (5k +3) - 4 chia hết cho 7
=> 5k - 1 chia hết cho 7
Số k nhỏ nhất thoả mãn là 3. Như vậy số cần tìn là 5.3 + 3 = 18
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
a: x chia hết cho 4;5;10
nên \(x\in BC\left(4;5;10\right)\)
mà 10<=x<50
nên x=40
b: x=33
=>x=5m+3=7n+4 => x+17=5m+3+17=7n+4+17
=>x+17=5m+20=7n+21 => x+17=5(m+4)=7(n+3)
=>\(x+17\in B\left(5;7\right)\)
Mà x nhỏ nhất => x+17 nhỏ nhất => \(x+17=BCNN\left(5;7\right)=35\)
=>x=35-17=18
Vậy ..............