Tìm số tự nhiên x nhỏ nhất sao cho x chia cho 5 thì dư 3, x chia 7 thì dư 4.
( giúp mk nha ^-^ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là : a,a\(\in\)N*
Khi đó ta có: a:2 dư 1
<=> a - 1 \(⋮\)2
<=>a - 1 + 2 \(⋮\) 2
<=> a + 1 \(⋮\) 2 (1)
Mặt khác : a chia 3 dư 2
<=> a - 2 chia hết 3
<=> a- 2 + 3 chia hết 3
<=> a + 1 chia hết 3 (2)
Từ (1),(2):
<=> a+ 1 \(\in\)BC (2,3)
Mà BCNN (2, 3) =6 ( vì 2,3 = 1)
<=> a + 1 \(\in\) { 6k / k \(\in\)N}
=> K= 1 => a + 1 =6
<=> a = 6 - 1
<=> a = 5 ( thỏa mãn )
Vậy số ta cần tìm là : 5
Gọi số cần tìm là a
a: 2 dư 1 => a+1 chia hết cho 2
a: 3 dư 2 => a+1 chia hết chi 3
=> a+1 thuộc BC(2,3)
Vì a nhỏ nất nên a+1 nhỏ nhất
=> a+1=BCNN(2,3)=6
=>a+1=6=>a=5
Vậy số cần tìm là 5
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.