K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 8 2021

\(n+13=a^2,n+33=b^2,\left(b>a\ge0;a,b\inℤ\right)\).

\(b^2-a^2=n+33-\left(n+13\right)=20\)

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=20\)

Có \(a,b\)là số nguyên nên \(b+a,b-a\)là các ước của \(20\)mà lại có \(\left(b+a\right)+\left(b-a\right)=2b\)là số chẵn nên \(b+a,b-a\)cùng tính chẵn lẻ, do đó ta chỉ có trường hợp: 

\(\hept{\begin{cases}b+a=10\\b-a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=6\end{cases}}\)

suy ra \(n=3\).

NM
6 tháng 8 2021

ta giả sử;

\(\hept{\begin{cases}a^2=n+13\\b^2=n+33\end{cases}\Rightarrow b^2-a^2=20}\) ha y \(\left(b-a\right)\left(b+a\right)=20\Rightarrow\orbr{\begin{cases}b-a=1\\b-a=2\end{cases}\text{ hoặc }b-a=4}\)

với \(\hept{\begin{cases}b-a=1\\b+a=20\end{cases}}\) hoặc \(\hept{\begin{cases}b-a=4\\b+a=5\end{cases}}\)mâu thuẫn với a,b là số tự nhiên 

với \(\hept{\begin{cases}b-a=2\\b+a=10\end{cases}\Leftrightarrow\hept{\begin{cases}b=6\\a=4\end{cases}\Rightarrow n=3}}\)

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

NV
16 tháng 4 2022

\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP

\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP

\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)

Ta có:

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)

Thay lại kiểm tra thấy đều thỏa mãn

17 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

 

9 tháng 3 2022

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.