K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

x+y+z=1;x^2+y^2+z^2=1;x^3+y^3+z^3=1

=>x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1

=>x=y=z=1

2 tháng 6 2017

x = y = z = 1

\(\Rightarrow\) x + y + z = 3

mà đề bảo x + y + z = 1

\(\Rightarrow\) làm sai

2 tháng 10 2019

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem

1 tháng 3 2020

I don't know how to do exercise

1 tháng 3 2020

\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)

Ta có: \(x^2+y^2=37+z^2\)

<=> \(\left(x+y\right)^2-2xy=37+z^2\)

<=> \(2xy=\left(7+z\right)^2-37-z^2\)

<=> \(xy=6+7z\)

Ta có: \(x^3+y^3=1+z^3\)

<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)

<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry