BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
3) 2n + 1 và 14n + 5 với n \(\in\) N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
Gọi ƯCLN(3n+1 ; 4n +1 ) là d
\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)
=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d
=> 1 ⋮ d
=> d = 1
Vậy .......
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
1) 3n + 1 và 4n + 1 với n ∈ N
Gọi d là (3n + 1, 4n+1)
=) 3n+1 chia hết cho d
=) 4n+1 chia hết cho d
Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ
Ta có: 4(3n+1) - 3(4n+1)
= 12n + 4 - 12n+3
= 1
hay d chia hết cho 1 =) d =1 (đpcm)
do đó : (3n + 1, 4n+1) = 1
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(7n+10;5n+7\right)\)
Ta có:
\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)
\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)
\(\Rightarrow15n+21-14n-20⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)
\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Gọi ƯCLN7n+10 ; 5n+7 là d
Theo đề ra ta có :
\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)
=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)
=> \(45n+50-\left(45n+49\right)⋮d\)
=> 1⋮ d
=> d = 1
Vậy (7n+10 ; 5n + 7 ) = 1
Gọi ƯCLN(3n+1 ; 5n + 2 ) là d
=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)
=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d
=> 2 ⋮ d
Mà chưa xác định được n chẵn hay lẻ
=> Đề sai
a) Đặt UCLN ( n ; n - 1 ) = d
=> n chia hết cho d ; n - 1 chia hết cho d
=> n - ( n - 1 ) chia hết cho d
=> n - n + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n và n - 1 là 2 số nguyên tố cùng nhau
b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d
=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d
=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d
=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d
=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d
=> 14n + 7 - 14n - 6 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau
Goi ƯCLN 2n+1 ; 14n+5 là d
\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)
=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d
=> 2 ⋮ d
Mà 2n + 1 lẻ
=> d = 1
Vậy ...........
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau
:3) 2n + 1 và 14n + 5 với n ∈ N
Gọi d là = (2n+1, 14n+5)
=) 2n+1 chia hết cho d
=)14n+ 5 chia hết cho d
Vì 2n+1 là số lẻ mà d là ước của 2n+1
=) d là số lẻ
Ta có: 7 (2n+1) - (14n+5)
= 14n + 7 - 14n + 5
= 2
Mà 2n+1 lẻ
=) d= 1
Vậy (2n+1, 14n+5) = 1