K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Goi ƯCLN 2n+1 ; 14n+5 là d

\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)

=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d

=> 2 ⋮ d

Mà 2n + 1 lẻ

=> d = 1

Vậy ...........

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau

:3) 2n + 1 và 14n + 5 với n ∈ N

Gọi d là = (2n+1, 14n+5)

=) 2n+1 chia hết cho d

=)14n+ 5 chia hết cho d

Vì 2n+1 là số lẻ mà d là ước của 2n+1

=) d là số lẻ

Ta có: 7 (2n+1) - (14n+5)

= 14n + 7 - 14n + 5

= 2

Mà 2n+1 lẻ

=) d= 1

Vậy (2n+1, 14n+5) = 1

 

11 tháng 3 2017

Gọi d là UCLN(2n+1;14n+5)

->(14n+5)-(2n+1)chia hết cho d

->(14n+5)-7(2n+1) chia hết cho d

->14n+5-14n-1 chia hết cho d

->n+5-n-1

4 chia hết cho d

d thuộc {1;-1;2;-2;4;-4}

Sau đó thì bạn dùng phương pháp thử chọn nha.

23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 4n +1 ) là d

\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)

=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d

=> 1 ⋮ d

=> d = 1

Vậy .......

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:

1) 3n + 1 và 4n + 1 với n ∈ N

Gọi d là (3n + 1, 4n+1)

=) 3n+1 chia hết cho d

=) 4n+1 chia hết cho d

Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ

Ta có: 4(3n+1) - 3(4n+1)

= 12n + 4 - 12n+3

= 1

hay d chia hết cho 1 =) d =1 (đpcm)

do đó : (3n + 1, 4n+1) = 1

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

6 tháng 11 2016

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3

Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d

=> 2k+1 chia hết cho d; 2k+3 chia hết cho d

=> (2k+1 - 2k-3) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}

mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(2n+5;3n+7) là d

=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d

=> (6n+15-6n-14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

mà d lớn nhất => d = 1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

23 tháng 11 2016

Giải:

Gọi \(d=UCLN\left(7n+10;5n+7\right)\)

Ta có:

\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)

\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)

\(\Rightarrow15n+21-14n-20⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)

\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau

 

23 tháng 11 2016

Gọi ƯCLN7n+10 ; 5n+7 là d

Theo đề ra ta có :

\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)

=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)

=> \(45n+50-\left(45n+49\right)⋮d\)

=> 1⋮ d

=> d = 1

Vậy (7n+10 ; 5n + 7 ) = 1

23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 5n + 2 ) là d

=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)

=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d

=> 2 ⋮ d

Mà chưa xác định được n chẵn hay lẻ

=> Đề sai

23 tháng 11 2016

Nhầm nha, Đề sai ồi,... Đề đúng:

3n + 2 và 5n + 3 với n N

7 tháng 12 2018

a) Đặt UCLN ( n ; n - 1 ) = d

=> n chia hết cho d ; n - 1 chia hết cho d

=> n - ( n - 1 ) chia hết cho d

=> n - n + 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> n và n - 1 là 2 số nguyên tố cùng nhau

b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d

=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d

=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d

=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d

=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d

=> 14n + 7 - 14n - 6  chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau

20 tháng 12 2018

Gọi:

d=UCLN(n,n-1)

Ta có: n chia hết cho d

n-1 chia hết cho d

=> n-(n-1) chia hết cho d

=> 1 chia hết cho d=> d=1

Vậy: n và n-1 ntcn 

b) gọi như vậy ta có:

7(2n+1)-14n+6 chia hết cho d

=> 1 chia hết cho d=>d=1

Vậy 2n+1 và 14n+6 ntcn