Cho
10k - 1 \(⋮\) 19 với k > 1
Chứng tỏ 102k -1 \(⋮\)19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
102k - 1 = (10k)2 - 1
= ( 10k - 1 ) ( 10k + 1 ) chia hết cho 19 vì 10k - 1 chia hết cho 19.
\(10^k\)-1 chia hết cho 19=> \(10^k\) -1 = 19n (n là số tự nhiên)
=>\(10^{k=}19n+1\)=>\(10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=\left(19n+1\right).\left(19n+1\right)=361n^2+38n+1\)
=>\(10^{2k}-1=361n^2+38n+1-1=361n^2+38n\)chia hết cho 19 =>\(10^{2k}-1\)chia hết cho 19
b) Ta có: \(x^2-4x+6\)
\(=x^2-4x+4+2\)
\(=\left(x-2\right)^2+2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2+2\ge2>0\forall x\)
hay \(x^2-4x+6>0\forall x\)
Vậy: phương trình \(x^2-4x+6=0\) vô nghiệm
c) Ta có: \(\left|x-2\right|=-1\)
mà \(\left|x-2\right|>0>-1\forall x\)
nên phương trình \(\left|x-2\right|=-1\) vô nghiệm(đpcm)
d) Ta có: \(\left|x\right|=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x\\x=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-x=0\\x+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=0\left(luônđúng\right)\\2x=0\end{matrix}\right.\Leftrightarrow x\in R\)
Vậy: S={x|\(x\in R\)}
Đặt A=\(10^{2k}-1\)
A-\(\left(10^k-1\right)\)=\(10^{2k}-1-\left(10^k-1\right)\)
\(A-\left(10^k-1\right)=10^{2k}-1-10^k+1\)
\(A-\left(10^k-1\right)=\left(10^{2k}-10^k\right)\)
\(A-\left(10^k-1\right)=10^k\left(10^k-1\right)⋮19\)(vì \(10^k-1⋮19\))
Vì \(A-\left(10^k-1\right)⋮19\)
Mà \(\left(10^k-1\right)⋮19\Rightarrow A⋮19\left(đpcm\right)\)