tìm x,y,z là số tự nhiên biết:abcdef.2=cdefab(abcdef và cdefab là 2 số độc lập, không phải phép nhân)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được
Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm
Tập hợp các số hữu tỉ dương : phép trừ không phải luôn thực hiện được
Ví dụ: (1/3) - (3/4) kết quả không phải là số hữu tỉ dương
Do x, y, z,t là 4 số tự nhiên khác nhau nên có \(x+y+z+t\ge4\)
Giả sử \(x+y+z+t\) là số nguyên tố mà \(x+y+z+t\ge4\) nên \(x+y+z+t\)lẻ.
Vì \(x+y+z+t\) lẻ nên số lượng số lẻ có thể là 1 và 3.
Với 1 số lẻ ,giả sử \(x\)là số lẻ ta có: \(x^2+y^2\ne z^2+t^2\)(Do \(x^2+y^2\)lẻ mà \(z^2+t^2\)chẵn).
Với 3 số lẻ, giả sử \(x,y,z\)là 3 số lẻ, ta có \(x^2+y^2\ne z^2+t^2\)( Do \(x^2+y^2\)chẵn mà \(z^2+t^2\)lẻ)
Do đó với mọi \(x,y,z,t\) tự nhiên khác nhau thì \(x+y+z+t\)không thể là số nguyên tố. Vậy \(x+y+z+t\)là hợp số.
Chúc em học tốt!
Tập hợp các số hữu tỉ khác 0 tất cả các phép cộng, trừ, nhân , chia luôn thực hiện được
abcdef là 000000