Tìm các số a , b sao cho phân thức\(\frac{x^2+5}{x^2-3x-2}\) viết được thành \(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
\(\Rightarrow\frac{x^2+5}{x^3-3x-2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất hệ số, ta có :
\(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
ĐKXĐ : \(x\ne\left\{-1;2\right\}\)
\(\frac{x^2+5}{x^3-3x-2}=\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+2ax+a+bx-2b}{\left(x-2\right)\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+x\left(2a+b\right)+\left(a-2b\right)}{\left(x-2\right)\left(x+1\right)^2}\)
Đồng nhất hệ số ta được : \(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
Vậy \(a=1;b=-2\)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)
Sử dụng phương pháp hệ số bật định .
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất với phân thức \(\frac{x^2+5}{x^3-3x-2}\) ta có : \(\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\begin{cases}a=1\\b=-2\end{cases}\)
Vậy \(\frac{x^2+5}{x^3-3x-2}=\frac{1}{x-2}-\frac{2}{\left(x+1\right)^2}.\)