Cho Δ ABC vuông ở A và AB > AC, phân giác góc A cắt BC ở E. Từ E vẽ 1 đường thẳng vuông góc với BC cắt AB ở F.
CMR: EF = EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tứ giác ABDM
có ^A=90 o ( tam giác ABC vuông tại A theo gt )
^D = 90 o ( gt )
=> ^A + ^D = 180 o
=> t/g ABDM là t/g nội tiếp ( dhnb )
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD )
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o
=> ^BMD = 45 o
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
SUy ra: AF=EC và DF=DC (1)
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC(2)
Từ (1) và (2) suy ra BD⊥CF
BÀI 1:A, ta có : AD=DB; DE//CB => ED là đường tbinh của tam giác ABC => AE=EC
Ta lại có: AE = EC ; EF//AB=>EF là đường trung bình của tam giác ACB
áp dụng tc đường tb trong tam giác ta có: EF//=1/2 AD hay EF=AD
B, Xét tam giác ADE và tam giác EFC CÓ:
AE = EC
AD = EF
góc A = góc E (cùng bù với góc EFD)
C,Theo phần a, ta có ED là đường tb của tam giác CAB => AE=EC
CHO MK 1 LIK E NHA