K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

vô ngiệm

25 tháng 11 2018

Có : \(\hept{\begin{cases}2\left(x+y\right)=z^2\Rightarrow2\left(x+y+z\right)+1=z^2+2z+1=\left(z+1\right)^2\\2\left(y+z\right)=x^2\Rightarrow2\left(y+z+x\right)+1=x^2+2x+1=\left(x+1\right)^2\\2\left(z+x\right)=y^2\Rightarrow2\left(z+x+y\right)+1=y^2+2y+1=\left(y+1\right)^2\end{cases}}\)  mà x,y,z không âm.

\(\Rightarrow x=y=z\) .

Thay vào 3 phương trình trên ta có : \(\orbr{\begin{cases}x=y=z=0\\x=y=z=4\end{cases}}\)

Vậy........

13 tháng 1 2020

\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)

Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)

<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)

Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương

ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)

Có: \(S^2-3P=S\)

=> \(S+3P\ge4P\)<=> \(S\ge P\)

=> \(S^2-S=3P\le3S\)

<=> \(0\le S\le4\)

+) S = 0 loại

+) S = 1 => P = 0 loại 

+) S = 2 => P =3/2 loại 

+) S = 3 => P = 2

=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2 

=>  (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn

 hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn

+) S = 4 => P = 4 

=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)

=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.

Vậy: có 3 nghiệm là:....

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry