bạn nào chỉ cho mình cách dùng denta để giải pt bậc 2 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi b chẵn thì nên dùng delta phẩy
Còn lại thì dùng delta
Ta có: \(16a-54a^2-1.06=0\)
\(\Leftrightarrow-54a^2+16a-1.06=0\)
Ta có: \(\Delta=b^2-4\cdot ac=16^2-4\cdot\left(-54\right)\cdot\left(-1.06\right)=27.04\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-16-5.2}{2\cdot\left(-54\right)}=\dfrac{53}{270}\\x_2=\dfrac{-16+5.2}{2\cdot\left(-54\right)}=\dfrac{1}{10}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{53}{270};\dfrac{1}{10}\right\}\)
\(16a-54a^2-1,06=0\\ \Leftrightarrow-54a^2+16a-1,06=0\)
Xét \(\Delta=16^2-4.\left(-54\right).\left(-1,06\right)=\dfrac{676}{25}\)
=> Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-16+\sqrt{\dfrac{676}{25}}}{2.\left(-54\right)}=\dfrac{1}{10}\\ x_2=\dfrac{-16-\sqrt{\dfrac{676}{25}}}{2.\left(-54\right)}=\dfrac{53}{270}\)
Bài 1 :
a) \(a\ne x\)
b) Tại a= 2 PT
\(\Leftrightarrow\left(5.2-8\right)x=2014\)
\(\Leftrightarrow2x=2014\)
\(\Leftrightarrow x=1007\)
Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)
Bài 2
Ta có :\(f\left(x\right)=2x^2-12x+14\)
\(=2\left(x^2-6x+9\right)-4\)
\(=2\left(x-3\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)
Nhớ K cho tớ nhé
phương trình bậc 2 có dạng : ax2 + bx + c = 0 .
biệt thức đen ta được tính như sau : \(\Delta=b^2-4ac\)