Bài 1: Cho tam giác ABC có số đo góc A,B,C lần lượt tỉ lệ với 3:4:5 . Tính số đo các góc của tam giác
giải giúp mk với mai mk nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Theo để bài \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{ B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)
hay: \(\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\)
\(\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\)
\(\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\)
Vậy ...........................
Gọi số đo 3 góc của \(\Delta ABC\)lần lượt là a; b; c (a; b; c \(\inℤ\)/ a+b+c=1800 )
Vì a; b; c lần lượt tỉ lệ với 3; 4; 5 nên:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t/c DTSBN, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)\(=\frac{a+b+c}{3+4+5}\)\(=\frac{180}{12}=15\)
=> a=15.3=45
b=15.4=60
c= 15.5=75
Đ/s: ...
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html
ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o
Theo để bài ˆA3=ˆB4=ˆC5A^3=B^4=C^5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o
hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o
ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o
ˆC5=15o⇒ˆC=15o.5=75o
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Tổng số đó của 1 tam giác là 180o
Gọi số đo của các góc A,B,C lần lượt là x,y,z
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
x/1 = 30 => x = 30
y/2 = 30 => y = 60
z/3 = 30 => z = 90
Vậy  = 30o ; B = 60o ; C = 90o
Gọi 3 góc của tam giác tại A ; B ; c lần lượt là a ; b và c
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
ÁP dụng tc of dãy ti số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\begin{cases}a=45^0\\b=60^0\\c=75\end{cases}\)
giải: gọi số đo các góc \(\widehat{A},\widehat{B},\widehat{C}\) lần lượt là x,y,z
theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5};x+y+z=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
vì \(\frac{x}{3}=15\Rightarrow x=15.3=45\Rightarrow x=45\)
\(\frac{y}{4}=15\Rightarrow y=15.4=60\Rightarrow y=60\)
\(\frac{z}{5}=15\Rightarrow z=15.5=75\Rightarrow x=75\)
vậy số đo \(\widehat{A}=45^o,\widehat{B}=60^o,\widehat{C}=75^o\)