Tìm giá trị lớn nhất của các biểu thức:
a) A=2002/|x|+2003
b)B=|x|+2002/-2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy:
|x|+2003≥2003|x|+2003≥2003
⇒1|x|+2003≤12003⇒1|x|+2003≤12003
⇒2002|x|+2003≤20022003⇒2002|x|+2003≤20022003⇒A≤20022003⇒A≤20022003
Dấu = khi x=0
Vậy MaxA=20022003⇔x=0
ĐK: \(x\in Z\)
a) Giải:
Để \(A\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)
Vậy giá trị lớn nhất của \(A\) là \(1\)
b) Để \(B\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất
Vì \(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)
Mà \(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)
Vậy giá trị lớn nhất của \(B\) là \(\dfrac{2002}{-2003}\)
Bài 1:
\(A=124-5\left|x-7\right|\Leftrightarrow-5\left|x-7\right|+124\)
+Có: \(-5\left|x-7\right|\le0với\forall x\\ \Rightarrow-5\left|x-7\right|+124\le124\\ \Leftrightarrow A\le124\)
+Dấu "=" xảy ra khi \(\left|x-7\right|=0\Leftrightarrow x=7\)
+Vậy \(B_{min}=124\) khi \(x=7\)
a)Ta thấy:
\(\left|x\right|+2003\ge2003\)
\(\Rightarrow\frac{1}{\left|x\right|+2003}\le\frac{1}{2003}\)
\(\Rightarrow\frac{2002}{\left|x\right|+2003}\le\frac{2002}{2003}\)\(\Rightarrow A\le\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxA=\(\frac{2002}{2003}\Leftrightarrow x=0\)
b)Ta thấy:
\(-\left|x\right|\le0\)\(\Rightarrow-\left|x\right|+2002\le2002\)
\(\Rightarrow\frac{-\left|x\right|-2002}{2003}\le\frac{-2002}{2003}\Rightarrow B\le-\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxB=\(-\frac{2002}{2003}\Leftrightarrow x=0\)