Bài 1 : Cho x,y \(\in\) N* và và x > 2 , y > 2. Chứng tỏ x + y < xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}x>2\\y>2\end{cases}}\)
\(\Rightarrow\)Đặt \(x=2+m\)và \(y=2+n\)\(\left(m;n\in N\cdot\right)\)
\(\Rightarrow x+y=2+m+2+n=4+m+n\)
\(xy=\left(2+m\right)\left(2+n\right)=4+2n+2m+mn\)
\(=4+m+n+\left(m+n+mn\right)>4+m+n\)
\(\Rightarrow xy>x+y\)
Vậy ...
Xét hiệu:2*(xy)-2*(x+y)
=2*xy-2x-2y
=(xy-2x)+xy-(2y)
=x*(y-2)+y*(x-2)
Vì x>2 nên x-2>0
y>2 nên y-2>0
=>x*(y-2)>0
và*(x-2)>0
=>x(y-2)+y*(x-2)>0=>2xy>2x+2y
=>2xy>2(x+y)
=>xy>x+y.
k mình nha!
Bài này là bài cuối của Đề thi 8 tuần ở Tam Điệp đúng không?
\(xy=\dfrac{xy}{2}+\dfrac{xy}{2}>\dfrac{2y}{2}+\dfrac{2x}{2}=x+y\)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )